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About this Book

This book consists of lecture notes for an advanced graduate course in
magnetohydrodynamics, or MHD, which was taught at the University of Wiscon-
sin, Madison, in the Fall Semester of 2007. It is not a textbook, or a treatise, or
a monograph, or an extended review paper. It is, as advertised, a set of lectures
that were actually given in a classroom setting, presented as close to verbatim as
possible while still being organized and grammatical. The course consisted of 26
class periods of an hour and a quarter each. However, there are 38 lectures, arranged
by topic. Some are very short, others more lengthy. Clearly, any given class session
might cover more than one topic, so the term “lecture” is somewhat arbitrary.

There was no final exam. The grades were based entirely on homework problems
that were assigned every 2 weeks or so and graded. Devising these problems was the
most difficult part of the course, and I was unhappy with the results. I have therefore
not included any of them in the present volume. Almost anyone could make up
better problems than I did. (Try it yourself!)

The course in MHD is part of a series of one semester core courses required
of plasma physics graduate students at the University of Wisconsin. Others are
Basic Plasma Physics, Fusion Fundamentals, Plasma Kinetic Theory, and Plasma
Waves. With the exception of Basic Plasma Physics, the courses may be taken
in any order, so the instructor cannot assume any specific advanced knowledge
of these fields on the part of the students. Similarly, the students have a variety
of backgrounds and interests. For example, in the Fall of 2007, the MHD class con-
sisted of 18 students from the Physics, Engineering Physics, Electrical Engineering,
and Astronomy/Astrophysics departments. Their interests varied accordingly. As a
consequence, I tried to present broad a view of MHD, for the most part avoid-
ing diversions into specialized topics and formalisms, such as tokamaks, that are
difficult, time-consuming, and have limited general interest. Because the students’
mathematical backgrounds were also varied, I spent some time reviewing certain
mathematic topics, such as tensors, dyads, matched asymptotic expansions, and the
calculus of variations that are essential to the development of MHD as a topic in
theoretic physics. The goal was to make the course as self-contained as possible.
These are included in the present notes.

Most of the material in the written lectures was actually covered in the classroom.
I have not attempted to “flesh out” much of anything here. With a few exceptions,

vii



www.manaraa.com

viii About this Book

if it is in the notes, it was said in class. Conversely, the lectures intentionally omit
some of the grinding details that accompany certain derivations. This is especially
true with respect to some of the material regarding the energy principle, resistive
instabilities, and MHD turbulence, and this is noted in the text. In almost all other
cases I tried to present as many of the relevant details as possible. I strived for a
reasonable balance given the time available for presentation. Because the scope of
the material is tailored to the time constraint of a 13-week semester, the lectures can
provide the basis for other courses in MHD. Of course, instructors are free to add
or delete material; in particular, they might want to invent some problem sets!

The notes contained in the present volume have been slightly revised from the
notes that were distributed to the students. I have added some footnotes referencing
source material and corrected some errors that have been brought to my attention.
I have also added a short quotation at the beginning of each lecture, which is meant
to refer (hopefully in a pithy, entertaining way) to some aspect of the material to
be presented. In doing this I was inspired by the famous book by Lord and Lady
Jeffreys.1 They were, however, true scholars who were well educated in classical
literature. In contrast, I found most of my quotes on Google! I hope you find them
at least interesting, and hopefully entertaining, because there’s little enough enter-
tainment value in MHD. Of course, you are invited to provide your own, alternative
versions!

I have also included an Appendix on extended MHD. This material was con-
tained in three lectures that I gave at UW in April, 2006. It talks about the kinetic
theory underlying the MHD model, and how people have tried to extend the model
to include additional physical effects. It is self-contained.

The Lectures on Turbulence (36) and Dynamos (38) have benefited from thor-
ough and critical reading by Drs. Paul Terry, Fausto Cattaneo, and Ellen Zweibel.
Their constructive comments and suggestions have greatly improved the presenta-
tion. As in the rest of the book, any errors that remain, either factual or interpretive,
are my responsibility.

I also wish to acknowledge Dr. Christian Caron and Ms. Gabriele Hukuba of
Springer-Verlag for all their assistance and support in the publication process.

I was partially supported by several grants from the U.S. Department of Energy
during the preparation of this book.

I hope you enjoy the lectures, and maybe even get something from them!

Madison, WI Dalton D. Schnack

1 Harold Jeffreys and Bertha Jeffreys, Methods of Mathematical Physics, Cambridge University
Press, Cambridge (1972).
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Preface

Magnetohydrodynamics, or MHD, is a theoretical way of describing the statics
and dynamics of electrically conducting fluids. The most important of these fluids
occurring in both nature and the laboratory are ionized gases, called plasmas. These
have the simultaneous properties of conducting electricity and being electrically
charge neutral on almost all length scales. The study of these gases is called plasma
physics.

MHD is the poor cousin of plasma physics. It is the simplest theory of plasma
dynamics. In most introductory courses, it is usually afforded a short chapter or
lecture at most: Alfvén waves, the kink mode, and that is it. (Now, on to Landau
damping!) In advanced plasma courses, such as those dealing with waves or kinetic
theory, it is given an even more cursory treatment, a brief mention on the way to
things more profound and interesting. (It is just MHD! Besides, real plasma physi-
cists do kinetic theory!)

Nonetheless, MHD is an indispensable tool in all applications of plasma physics.
Even the simplest experiment will not be built unless it has first passed muster with
MHD. The reason is that MHD deals with fundamental force balance and deviation
from it, concepts that are surprisingly subtle and complex. MHD also provides the
machinery for understanding the basic properties of global structure of magnetized
plasmas, how they can sustain themselves, and why they share a small number of
global properties. In this course we will look at many of these important issues in
what I hope is sufficient detail as to reveal some of the elegance that underlies this
immensely useful theory, and gain some appreciation for the skill of the pioneers of
the field.

While MHD is the simplest mathematical model of a plasma, it is difficult to
justify as a valid description of any interesting plasma. Surely plasmas know that
they are made of individual ions and electrons (or at a minimum of separate ion
and electron fluids) and that they are so hot that collisions between particles are
relatively rare events! MHD completely ignores both of these issues. Nonetheless, it
is a fact that MHD provides a remarkably accurate description of the low-frequency,
long-wavelength dynamics of real plasmas. MHD seems to work (even when it
shouldn’t)!

ix
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x Preface

The validity of MHD as a mathematical model for magnetized plasmas has been
discussed in great detail elsewhere, particularly in the book by Freidberg.2 It cannot
be said better, so it will not be attempted here. Instead, from the beginning we adopt
the point of view that MHD describes the dynamics of a continuum fluid that is
capable of conducting an electric current, that this fluid can be characterized by a
few parameters such as mass density, velocity, and pressure, and that the material
properties of this fluid are independent of the physical size of the sample. That
is, the material looks exactly the same no matter how finely it is subdivided, and
behavior arising from the atomic structure of matter is not considered. This is pre-
cisely the approach taken with hydrodynamics, which is one of the most complex
and difficult topics in classical physics. We will find that MHD is more complex,
and even more difficult, primarily as a result of spatial anisotropy introduced by the
magnetic field.

In this course, MHD will be treated as a topic in theoretical physics. There will
be little attempt at experimental justification or motivation; these will be taken as
self-evident. Mathematics is the language of theoretical physics, and a rudimen-
tary knowledge of what is normally called “methods of theoretical physics” (e.g.,
linear algebra, ordinary differential equations, Fourier analysis, and some special
functions) is assumed. However, the subject requires some additional emphasis on
vectors, tensors and dyads, the calculus of variations, and what is called “matched
asymptotic expansions,” and these will be reviewed briefly as necessary. Of course,
and as always, a certain amount of algebraic fortitude is useful.

The broad areas chosen for presentation are the derivation and properties of
the fundamental equations, equilibrium, waves and instabilities, turbulence, self-
organization, and dynamos. The latter topics require the inclusion of the effects of
electrical resistivity and nonlinearity. Together, these span the range of MHD issues
that have proven to be important for understanding magnetically confined plasmas,
as they all describe either force balance, or some small deviation from it. Most have
also been important in some space and astrophysical applications. It will take some
effort to do them justice in the course of a single semester. Unfortunately, issues
related to large deviations from force balance, such as strong flows and shocks, will
not be covered, perhaps for no better reason than you cannot present what you do
not know!

One of the areas where MHD has been useful is in the design and analysis of
toroidally confined plasmas, in particular the tokamak configuration. The theory of
these toroidal plasmas is extremely well developed and mathematically nuanced. It
is unfortunate that this elegant theory has led to a jargon, a patois, that is difficult to
penetrate while providing few additional physical insights. (Further, these theories
of tokamak plasmas are applicable only in a vanishingly small volume of the uni-
verse, namely, the total volume of all the tokamaks!) Most of the important concepts
can be illustrated in other, simpler geometries, and that is the plan here. (See also
the last comment in the previous paragraph.) One exception is the equilibrium of an

2 Jeffrey P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press, New York (1987).
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Preface xi

axially symmetric toroidal plasma, which provides an introduction to the necessary
concepts and terminology. The plan is to provide sufficient background to enable
further individual study.

Nonetheless, each of the topics to be presented in the course can be (and has
been) pursued in significantly more (often mind-numbing) detail than can be pre-
sented here. These topics are somewhat analogous to a constellation of black holes
(or perhaps rabbit holes); it is possible to disappear into any one of them for the
rest of your life, never to be seen again. The best I can do is act as a guide around
this universe and to try to provide you with a “star chart” so that you can avoid the
most obvious traps and pitfalls in your future careers. Another goal is to provide
sufficient background in MHD so as to make the published literature in these areas
at least initially accessible.

In preparing this course, I have assumed that all students are at the level of
advanced graduate education and that this may be one of their last formal courses
before embarking on full-time research. These students have already proven that
they are excellent at taking written exams. It is also conceivable, perhaps probable,
that for each topic there will be some students in the class with more knowledge
than the instructor. Therefore, it is useless to try to devise tricky exams or to try
to be too didactic about any particular topic. The fundamental working assumption
is that all students are sufficiently mature and motivated to accept and appreciate
guidance rather than instruction and examination, and that is how I shall proceed.
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Lecture 1
Introduction

You must start at the very beginning.
Julie Andrews, The Sound of Music

Magnetohydrodynamics: MHD. Magneto—having to do with electromagnetic fields;
hydro—having to do with fluids; and dynamics—dealing with forces and the laws of
motion. Magnetohydrodynamics, or MHD, is the mathematical model for the low-
frequency interaction between electrically conducting fluids and electromagnetic
fields.

So you will need to know about fluid dynamics, you will need to know about
electromagnetism, and you will need to know some plasma physics.

An isotropic medium is one that has no preferred direction in space; it looks
the same and behaves in the same way in all directions. Hydrodynamics, which
generally deals with isotropic materials (fluids), is a very difficult subject. MHD
is even more difficult because a magnetic field identifies a preferred direction in
space. A magnetized fluid is said to be an anisotropic medium. Further, since there
will be interaction between the fluid and the magnetic field, some form of Maxwell’s
equations must be solved simultaneously with the dynamical equations for the fluid.
You will see that this can be a formidable task.

In this course, MHD will be treated as a topic in theoretical physics. We will
make some fundamental assumptions regarding the properties of the material and
the time and spatial scales of interest, and the rest will follow self-consistently (and
hopefully logically). Little or no experimental motivation will be given, but will
rather be taken as self-evident.

Mathematics is the language of theoretical physics. Specific topics that are essen-
tial to the theoretical analysis of the dynamics of a magnetized fluid are as follows:

• Vector and tensor analysis,
• ODEs,
• PDEs,
• Calculus of variations,
• Method of matched asymptotic expansions.

Short reviews of some of these topics will be provided at the appropriate time during
the presentation.

From the beginning, we adopt the point of view that MHD describes the dynam-
ics of a continuum fluid that is capable of conducting an electric current, that this

Schnack, D.D.: Introduction. Lect. Notes Phys. 780, 1–4 (2009)
DOI 10.1007/978-3-642-00688-3 1 c© Springer-Verlag Berlin Heidelberg 2009
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2 Lectures in Magnetohydrodynamics

fluid can be characterized by a few parameters such as mass density, velocity, and
pressure, and that the material properties of this fluid are independent of the physical
size of the sample. As stated in Vol. 8 of Landau and Lifschitz,1 “physical quantities
are averaged over volumes that are ‘physically infinitesimal’, ignoring the varia-
tions that result from the molecular structure of matter.” That is, the material looks
exactly the same no matter how finely it is subdivided. This is our fundamental
assumption.

This assumption implies an ordering of length scales. Some important distances
are as follows:

• a0, the atomic radius;
• λ, the “mean free path” between atomic collisions;
• δ, the “physically infinitesimal” distance;
• L , the smallest relevant macroscopic distance to be considered (e.g., L ∼ 1/kmax,

the shortest wavelength of interest).

Our fundamental assumption implies the ordering λ ∼ a0 << δ < L . Whenever
λ ≥ δ, L , the model breaks down, and it must be modified and further justified. This
is the realm of extended MHD, and is beyond the scope of this course. (Except, see
the Appendix.)

We will also assume an ordering of times scales. In particular, we will attempt to
describe only low-frequency motions, those for which V 2/c2 << 1, where V is a
characteristic fluid velocity and c is the speed of light. With V = ωL , where ω is
a characteristic frequency, we have ω2 << c2/L2, or τ = 1/ω >>>> L/c = τc.
The characteristic time intervals for MHD are very much longer than the time it
takes a light wave to transit the macroscopic system.

We further assume that the smallest subdivision of the medium is in local ther-
modynamic equilibrium, which is provided by inter-atomic collisions. It can be
characterized by a temperature T . So, we also require that τ >> 1/νc, where νc

is the frequency of inter-atomic collisions.
The usual definition of a fluid is a substance that resists an applied compressive

stress, but continually deforms, or flows, under an applied shear stress, regardless
of the magnitude of the applied stress.

This behavior is illustrated in Fig. 1.1, which shows the response of a fluid ele-
ment to an applied force. Figure 1.1a shows a compressive stress. The fluid generates

Fig. 1.1 (a) A fluid element
resisting a compressive force;
(b) a fluid element cannot
resist a shearing force. It
deforms continuously

1 L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, Pergamon Press,
Oxford, UK (1960).
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a restoring force that opposes the applied force; it can support compressive stresses.
Figure 1.1b shows a shearing stress. In this case, the fluid generates no restoring
force, and the distortion will grow continually. The fluid cannot support a shearing
stress.

We will see that the restoring force generated in response to an applied force
leads to wave propagation. Thus a fluid is commonly said to allow the propagation
of compressional waves (e.g., sound waves), but not shear waves.

Now consider the sheared deformation of a fluid element permeated by a mag-
netic field B. If the fluid is electrically conducting, we will see that the magnetic
field is deformed along with the fluid. This situation is sketched in Fig. 1.2, where
the shearing force is applied perpendicular to the direction of the magnetic field.
The resulting bending of the field lines produces a restoring force that opposes the
applied stress. Thus, an electrically conducting fluid can support the propagation of
shear waves. This result was considered so counterintuitive and novel that at first it
was not believed to be true. Subsequent astronomical observations and experiments
showed the existence of these waves, and this led to the awarding in 1970 of the
Nobel Prize in physics to Hannes Alfvén, whose name is attached to these waves.
This remains the only Nobel awarded in plasma physics. (In contrast, a shearing
force applied parallel to the magnetic field produces no such restoring force, and the
fluid will act like it is not magnetized.)

Fig. 1.2 A magnetized fluid
element resists shearing stress
because of the restoring force
supplied by the magnetic field

At this point, it may be useful to define what we mean by a magnetic field line.
The magnetic induction, or magnetic field, is a vector function, denoted as B(x, t),
that assigns a magnitude and direction to all points in space. (We will soon be more
specific about what we mean by the term vector.) Physically, this field is produced
by electric currents flowing somewhere in the universe. As with all vector fields, it
is possible to define a set of three-dimensional curves that are everywhere tangent to
the vector B. Sometimes these are called streamlines; here we call them field lines.
The defining equations of these curves are

dx

Bx
= dy

By
= dz

Bz
= dl

B
, (1.1)

where (x, y, z) are Cartesian coordinates, B =
√

B2
x + B2

y + B2
z is the magnitude

of the magnetic field (the magnetic field strength), and l is the distance along the
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field line. The trajectory of the field line x(l), y(l), and z(l) passing through a point
(x0, y0, z0) can be found by integrating equations

dx

dl
= Bx

B
, (1.2)

dy

dl
= By

B
, (1.3)

and

dz

dl
= Bz

B
, (1.4)

beginning from the point (x0, y0, z0).
We take it as an experimental and observational fact that magnetic field lines

either close upon themselves or fill space ergodically. (An ergodic trajectory is one
that passes arbitrarily close to all points in space without closing on itself.) In either
case, the field line has neither beginning nor end. If we consider an arbitrarily shaped
surface S enclosing a volume V , this means that as many field lines must leave the
enclosed volume as enter it. This is expressed mathematically as

∮

S

B · dS = 0, (1.5)

or, using Gauss’ theorem,

∫

V

∇ · BdV = 0. (1.6)

Since this must hold for every volume V , we must have

∇ · B = 0, (1.7)

which expresses the “endless” nature of field lines. This is one of the fundamental
equations of physics.

We will now proceed to derive the following:

1. The equations for the dynamics of the fluid.
2. The equations for the dynamics of the electromagnetic field.
3. Some properties of the combined equations.

These will require a familiarity with the language of scalars, vectors, tensors, and
dyads. This is reviewed briefly in the next lecture.
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Lecture 2
Review of Scalars, Vectors, Tensors, and Dyads

Our vice always lies in the direction of our virtues, and in
their best estate are but plausible imitations of the latter.

Henry David Thoreau

In MHD, we will deal with relationships between quantities such as the magnetic
field and the velocity that have both magnitude and direction. These quantities are
examples of vectors (or, as we shall soon see, pseudovectors). The basic concepts of
scalar and vector quantities are introduced early in any scientific education. How-
ever, to formulate the laws of MHD precisely, it will be necessary to generalize these
ideas and to introduce the less familiar concepts of matrices, tensors, and dyads.
The ability to understand and manipulate these abstract mathematical concepts is
essential to learning MHD. Therefore, for the sake of both reference and complete-
ness, this lecture is about the mathematical properties of scalars, vectors, matrices,
tensors, and dyads. If you are already an expert, or think you are, please skip class
and go on to Lecture 3. You can always refer back here if needed!

A scalar is a quantity that has magnitude. It can be written as

S α 9 (2.1)

It seems self-evident that such a quantity is independent of the coordinate system in
which it is measured. However, we will see later in this lecture that this is somewhat
naı̈ve, and we will have to be more careful with definitions. For now, we say that
the magnitude of a scalar is independent of coordinate transformations that involve
translations or rotations.

A vector is a quantity that has both magnitude and direction. It is often printed
with an arrow over it (as in �V ) or in bold-face type (as in V, which is my preference).
When handwritten, I use an underscore (as in V , although many prefer the arrow
notation here, too). It can be geometrically represented as an arrow. A vector has a
tail and a head (where the arrowhead is). Its magnitude is represented by its length.
We emphasize that the vector has an “absolute” orientation in space, i.e., it exists
independent of any particular coordinate system. Vectors are therefore “coordinate-
free” objects, and expressions involving vectors are true in any coordinate system.
Conversely, if an expression involving vectors is true in one coordinate system, it is
true in all coordinate systems. (As with the scalar, we will be more careful with our
statements in this regard later in this lecture.)

Schnack, D.D.: Review of Scalars, Vectors, Tensors, and Dyads. Lect. Notes Phys. 780,
5–18 (2009)
DOI 10.1007/978-3-642-00688-3 2 c© Springer-Verlag Berlin Heidelberg 2009
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Vectors are added with the parallelogram rule. This is shown geometrically in
Fig. 2.1.

Fig. 2.1 Illustration of the
parallelogram rule for adding
vectors

This is represented algebraically as C = A + B.
We define the scalar product of two vectors A and B as

A · B = AB cos θ, (2.2)

where A and B are the magnitudes of A and B and θ is the angle (in radians) between
them, as in Fig. 2.2:

Fig. 2.2 Illustration of the
scalar product of two vectors
A and B as the projection of
one on the other

The quantity S = A · B is the projection of A on B, and vice versa. Note that it can
be negative or zero. We will soon prove that S is a scalar.

It is sometimes useful to refer to a vector V with respect to some coordinate
system (x1, x2, x3), as shown in Fig. 2.3. Here the coordinate system is orthogonal.
The vectors ê1, ê2, and ê3 have unit length and point in the directions of x1, x2,
and x3, respectively. They are called unit basis vectors. The components of V with
respect to (x1, x2, x3) are then defined as the scalar products

V1 = V · ê1, V2 = V · ê2, V3 = V · ê3. (2.3a,b,c)

The three numbers (V1, V2, V3) also define the vector V.
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Fig. 2.3 A vector V and the
basis vectors in a
three-dimensional Cartesian
coordinate system

Of course, a vector can be referred to another coordinate system (x ′
1, x ′

2, x ′
3) by

means of a coordinate transformation. This can be expressed as

x ′
1 = a11x1 + a12x2 + a13x3,

x ′
2 = a21x1 + a22x2 + a23x3,

x ′
3 = a31x1 + a32x2 + a33x3,

(2.4)

where the nine numbers aij are independent of position; it is a linear transformation.
Equation (2.4) can be written as

x ′
i =

3∑
j=1

aijx j , i = 1, 2, 3. (2.5)

We will often use the shorthand notation

x ′
i = aijx j , (2.6)

with an implied summation over the repeated index (in this case j). This is called
the Einstein summation convention. Since the repeated index j does not appear in
the result (the left-hand side), it can be replaced by any other symbol. It is called a
dummy index. The economy of the notation of (2.6) over (2.4) is self-evident.

Equation (2.6) is often written as

x′ = A · x, (2.7)

where

x =
⎛
⎝

x1

x2

x3

⎞
⎠ (2.8)

is called a column vector. The transpose of x is the row vector

xT = ( x1 x2 x3
)
. (2.9)



www.manaraa.com

8 Lectures in Magnetohydrodynamics

The nine numbers arranged in the array

A =
⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ (2.10)

form a matrix. (In this case the matrix is 3 × 3.) The “dot product” in Eq. (2.7)
implies summation over the neighboring indices, as in Eq. (2.6). Note that xT ·
A ≡ x j a ji �= A · x (unless A is symmetric, i.e., aij = a ji ).

Differentiating Eq. (2.6) with respect to xk , we find

∂x ′
i

∂xk
= aij

∂x j

∂xk
= aijδ jk = aik , (2.11)

which defines the transformation coefficients aik .
For reference, we give some matrix definitions and properties:

1. The identity matrix is defined as

I =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ = δij. (2.12)

2. The inverse matrix A−1, is defined by A−1 · A = I.
3. If aij are the components of A, then a ji are the components of AT , the transpose

of A. (If A = AT , A is symmetric.)
4. The adjoint matrix is defined by A† = A∗T , where (..)∗ is the complex conjugate;

i.e., a†
ij = a∗

j i .

5. If A = A†, then A is said to self-adjoint. (This is the generalization of a symmet-
ric matrix to the case where the components are complex numbers.)

6. Matrix multiplication is defined by A · B = Aij B jk .
7. (A · B)T = BT · AT .
8. (A · B)† = B† · A†.

The prototypical vector is the position vector

r = x1ê1 + x2ê2 + x3ê3 ≡ (x1, x2, x3) . (2.13)

It represents a vector from the origin of coordinates to the point P (x1, x2, x3).
We say that the three numbers (V1, V2, V3) are the components of a vector if they
transform like the components of the position vector r under coordinate rotations.
Vectors are defined by their transformation properties.

We require that the length of the position vector, defined by l2 = xT · x, be
invariant under coordinate rotations, i.e., l2 = xT · x = x′T · x′. Then
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l2 = xT · x = x′T · x′

= (A · x)T · (A · x)

= (xT · AT ) · (A · x)

= xT · (AT · A) · x,

so that AT · A = I, or AT = A−1. Matrices with this property are called orthogonal
matrices, and the rotation matrix A is an orthogonal matrix, i.e.,

a−1
ij = aji, (2.14)

or, since x = A−1 · x′,

∂x ′
i

∂x j
= ∂x j

∂x ′
i

. (2.15)

Then the components of the rotation matrix A have the property

aijaik = ∂x ′
i

∂x j

∂x ′
i

∂xk
= ∂x ′

i

∂x j

∂xk

∂x ′
i

= ∂xk

∂x j
= δjk. (2.16)

We now say that the three numbers V1, V2, and V3 are the components of a vector if
they transform like the position vector r under coordinate rotations, i.e.,

V ′
i = aijVj , (2.17)

where the aij are the components of an orthogonal matrix. (Note that not all triplets
are components of vectors.)

Suppose that A and B are vectors. As an illustration of the algebraic manipulation
of vector quantities, we now prove that the product defined in Eq. (2.2) is a scalar.
To do this, we must show that S′ = A′ · B′, the value of the product in the primed
coordinate system, is the same as S = A · B, the value in the unprimed system:

S′ = A′ · B′

= aij A j aik Bk

= aijaik A j Bk

= δjk A j Bk

= A j Bj = S,

where the property of orthogonal matrices defined in Eq. (2.16) has been used. Fur-
ther, if S = A · B is a scalar, and B is a vector, then A is also a vector.

In addition to the scalar product of two vectors, we can also define the vector
product of two vectors. The result is another vector. This operation is written sym-
bolically as C = A × B. The magnitude of C, C , is given by C = AB sin θ , in
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analogy with Eq. (2.2). By definition, the direction of C is perpendicular to the
plane defined by A and B along with the “right-hand rule.” Note that it can point
either “above” or “below” the plane, and may be zero.

In index notation, the vector product is written as

Ci = εijk A j Bk . (2.18)

The quantity εijk is called the Levi-Civita tensor density. It will prove to be quite
important and useful in later analysis. It has 27 components, most of which vanish.
These are defined as

ε123 = ε231 = ε312 = 1 (even permutation of the indices)
ε132 = ε213 = ε321 = −1 (odd permutation of the indices)
εi jk = 0 if i = j, or i = k, or j = k

⎫
⎬
⎭ . (2.19)

We should really prove that C so defined is a vector, but I will leave it as an exercise
for the student.

The Levi-Civita symbol satisfies the very useful identity

εi jkεlmk = δilδ jm − δimδ jl . (2.20)

The expression can be used to derive a wide variety of formulas and identities
involving vectors and tensors. For example, consider the “double cross product”
A × (B × C). We write this in a Cartesian coordinate system as

A × (B × C) ⇒ εi jk A j (B × C)k = εi jk A j (εklm BlCm)

= εi jkεklm A j BlCm = εi jk εlmk︸︷︷︸
Even permutation of indices

A j BlCm

= (δilδ jm − δimδ jl
)

︸ ︷︷ ︸
From Equation (2.20)

A j BlCm = δil A j BlC j − δim A j B j Cm

= A j Bi C j − A j B j Ci = Bi
(

A j C j
)− Ci

(
A j Bj

)

⇒ B (A · C) − C (A · B) , (2.21)

which is commonly known as the “BAC-CAB rule.” The first step in the derivation
was to translate the vector formula into components in some convenient Cartesian
coordinate system, then turn the crank. We recognized the formula in the line pre-
ceding Eq. (2.21) as another vector formula expressed in the same Cartesian system.
However, if a vector formula is true on one system, it is true in all systems (even
generalized, non-orthogonal, curvilinear coordinates), so we are free to translate it
back into vector notation. This is a very powerful technique for simplifying and
manipulating vector expressions.

We define the tensor product of two vectors B and C as A = BC or
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Aij = Bi C j . (2.22)

How do the nine numbers Aij transform under rotations? Since B and C are vectors,
we have

A′
ij = B ′

i C
′
j = (aik Bk)

(
ajlCl

) = aikajl BkCl,

or

A′
ij = aikajl Akl. (2.23)

Equation (2.23) is the tensor transformation law. Any set of nine numbers that trans-
form like this under rotations form the components of a tensor.

The rank of the tensor is the number of indices. We notice that a scalar is a
tensor of rank zero, a vector is a first-rank tensor, the 3 × 3 array just defined is a
second-rank tensor, etc. In general, a tensor transforms according to

A′
i jkl..... = aipa jqakr als . . . . . . Apqrs...... (2.24)

We can also write A in dyadic notation:

A = BC = (B1ê1 + B2ê2 + B3ê3) (C1ê1 + C2ê2 + C3ê3)

= B1C1ê1ê1 + B1C2ê1ê2 + B1C3ê1ê3

+ B2C1ê2ê1 + B2C2ê2ê2 + B2C3ê2ê3

+ B3C1ê3ê1 + B3C2ê3ê2 + B3C3ê3ê3.

(2.25)

The quantities êi ê j are called unit dyads. Note that

ê1 · A = B1C1ê1 + B1C2ê2 + B1C3ê3 (2.26)

is a vector, while

A · ê1 = B1C1ê1 + B2C1ê2 + B3C1ê3 (2.27)

is a different vector. In general, BC �= CB.
We could similarly define higher-rank tensors and dyads as D = AE, or Di jk =

Aij Ek , etc.
Contraction is defined as summation over a pair of indices, e.g., Di = Aij E j .

Contraction reduces the rank by 2. We have also used the notation D = A · E
to indicate contraction over “neighboring” indices. (Note that A · E �= E · A.)
The “double-dot” notation (ab) : (cd) is often used, but is ambiguous. We define
A : B ≡ Aij Bij, a scalar.
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We now define a differential operator in our Cartesian coordinate system1

∇ ≡ ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
≡ êi

∂

∂xi
≡ êi∂i . (2.28)

The symbol ∇ is sometimes called “nabla,” and more commonly, “grad,” which is
short for “gradient.” So far, it is just a linear combination of partial derivatives; it
needs something more. What happens when we let it “operate” on a scalar function
f (x1, x2, x3)? We have

∇ f = ê1
∂ f

∂x1
+ ê2

∂ f

∂x2
+ ê3

∂ f

∂x3
. (2.29)

What kind of a “thing” is ∇ f ? Consider the quantity g = dx · ∇ f , where dx =
ê1dx1 + ê2dx2 + ê3dx3 is a vector defining the differential change in the position
vector:

g = dx · ∇ f,

= dx1
∂ f

∂x1
+ dx2

∂ f

∂x2
+ dx3

∂ f

∂x3
= d f,

which we recognize as the differential change in f , and therefore a scalar. Therefore,
by the argument given previously, since dx · ∇ f is a scalar, and dx is a vector, the
three quantities ∂ f/∂x1, ∂ f/∂x2, and ∂ f/∂x3 form the components of a vector, so
∇ f is a vector. It measures the magnitude and direction of the rate of change of the
function f at any point in space.

Now form the dyad D = ∇V, where V is a vector. Then the nine quantities
Dij = ∂i Vj are the components of a second-rank tensor. If we contract over the
indices i and j we have

D = ∂i Vi ≡ ∇ · V, (2.30)

which is a scalar. It is called the divergence of V.
We can take the vector product of ∇ and V, D = ∇ × V, or

Di = εi jk∂ j Vk . (2.31)

This is called the curl of V. For example, in Cartesian coordinates, the x1

component is

1 The discussion of the vector nature of the gradient operator follows that of the Feynman’s lec-
tures: R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics Vol. 1,
Addison-Wesley, Reading, MA (1963).
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D1 = ε123
∂V2

∂x3
+ ε132

∂V3

∂x2
= ∂V2

∂x3
− ∂V3

∂x2
,

by the properties of εijk.
We could also have ∇ operate on a tensor or dyad: ∇A ⇒ ∂i A jk , which is a third-

rank tensor. A common notation for this is A jk,i (the comma denotes differentiation
with respect to xi ). Contracting over i and j ,

Dk = ∂ j A jk = ∇ · A, (2.32)

or A jk, j , which is the divergence of a tensor (it is a vector). In principle we could
define the curl of a tensor, etc.

So far we have worked in Cartesian coordinates. This is because they are easy to
work with, and if a vector expression is true in Cartesian coordinates it is true in any
coordinate system.

We will now talk about curvilinear coordinates. Curvilinear coordinates are still
orthogonal but the unit vectors êi are functions of x, and this complicates the compu-
tation of derivatives. Examples of orthogonal curvilinear coordinates are cylindrical
and spherical coordinates.

The gradient operator is

∇ =
∑

i

êi
∂

∂xi
(2.33)

(the order of the unit vector and the derivative is now important), and any
vector V is

V =
∑

j

V j ê j , (2.34)

where now êi = êi (x) . Then the tensor (or dyad) ∇V is

∇V =
∑

i

êi
∂

∂xi

∑
j

Vj ê j

=
∑

i

êi

∑
j

∂

∂x j
Vj ê j

=
∑

i

∑
j

⎛
⎜⎜⎜⎝ êi ê j

∂Vj

∂xi︸ ︷︷ ︸
“Cartesian” part

+ êi V j
∂ ê j

∂xi︸ ︷︷ ︸
Extra terms if ê j =ê j (xi )

⎞
⎟⎟⎟⎠. (2.35)

The first term is just the usual Cartesian derivative. The remaining terms arise in
curvilinear coordinates. They must always be accounted for.
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For example, in familiar cylindrical (r, θ, z) coordinates, the unit vectors êr and
êθ are functions of space with the properties

∂ êr

∂θ
= êθ (2.36)

and

∂ êθ

∂θ
= −êr . (2.37)

Then in these polar coordinates,

∇V =
(

êr
∂

∂r
+ êθ

1

r

∂

∂θ

)
(êr Vr + êθ Vθ )

= êr êr
∂Vr

∂r
+ êr êθ

∂Vθ

∂r

+ êθ êr
1

r

∂Vr

∂θ
+ êθ

Vr

r

∂ êr

∂θ

+ êθ êθ

1

r

∂Vθ

∂θ
+ êθ

Vθ

r

∂ êθ

∂θ

= êr êr
∂Vr

∂r
+ êr êθ

∂Vθ

∂r

+ êθ êr

(
1

r

∂Vr

∂θ
− Vθ

r

)
+ êθ êθ

(
1

r

∂Vθ

∂θ
+ Vr

r

)
. (2.38)

Expressions of the form U ·∇V appear often in MHD. It is a vector that expresses
the rate of change of V in the direction of U. Then, for polar coordinates,

U · ∇V = êr

(
Ur

∂Vr

∂r
+ Uθ

r

∂Vr

∂θ
− Uθ Vθ

r

)
+ êθ

(
Ur

∂Vθ

∂r
+ Uθ

r

∂Vθ

∂θ
+ Uθ Vr

r

)
.

(2.39)
The third term in each of the brackets is the new terms that arise from the differen-
tiation of the unit vectors in curvilinear coordinates.

Of course, there is no need to insist that the bases êi (x) even be orthogonal. (An
orthogonal system has êi · ê j = δij.) Such systems are called generalized curvilinear
coordinates.2 Then the bases (ê1, ê2 , ê3 ) are not unique, because it is always possible
to define equivalent, reciprocal basis vectors (ê1, ê2, ê3) at each point in space by the
process

ê3 = ê1 × ê2/J, ê2 = ê3 × ê1/J, ê1 = ê2 × ê3/J, (2.40)

2 This discussion follows that of Donald H. Menzel, Mathematic Physics, Dover Publications,
New York (1961).
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where J = ê1 · ê2 × ê3 is called the Jacobian. A vector V can be equivalently
expressed as

V = V i êi , (2.41)

or

V = Vi êi . (2.42)

The V i are called the contravariant components of V, and the Vi are called the
covariant components. (Of course, the vector V, which is invariant by definition, is
neither contravariant or covariant.)

Our previous discussion of vectors, tensors, and dyads can be generalized to these
non-orthogonal coordinates, as long as extreme care is taken in keeping track of the
contravariant and covariant components. Of particular interest is the generalization
of vector differentiation, previously discussed for the special case of polar coordi-
nates. The tensor ∇V can be written as

∇V = êi ê j Di V
j , (2.43)

where

Di V
j = ∂i V

j + V kΓ
j
ik (2.44)

is called the covariant derivative. The quantities Γ
j
ik are called the Christoffel sym-

bols and are defined by

∂i êk = −Γ
j
ik êk . (2.45)

They are the generalization of Eqs. (2.36) and (2.37). [We remark that the Γ
j
ik are

not tensors, as they do not obey the transformation law, Eq. (2.24).] Expressions for
the Γ

j
ik in any particular coordinate system are given in terms of the metric tensor

components gij = êi · ê j , and gij = êi · ê j , as

Γk
ij = gkl

(
∂i gil + ∂ j gli − ∂l gij

)
. (2.46)

We stated previously that if an expression is true in Cartesian coordinates, it is
true in all coordinate systems. In particular, expressions for generalized curvilinear
coordinates can be obtained by replacing everywhere the derivative ∂i V j with the
covariant derivative Di V j , defined by Eq. (2.44). In analogy with the discussion
preceding Eq. (2.32), covariant differentiation is often expressed in the shorthand
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notation Di A jk ≡ A jk
..;i . Misner, Thorne and Wheeler3 call this the “comma goes to

semi-colon rule” for obtaining tensor expressions in generalized curvilinear coordi-
nates: first get an expression in orthogonal coordinates, and then change all commas
to semi-colons!

Generalized curvilinear coordinates play an essential role in the theoretical
description of tokamak plasmas. The topic is so detailed and complex (and, frankly,
difficult) that it will not be covered further here. I hope this short introduction will
allow you to learn more about this on your own.

We now return to Cartesian coordinates.
The divergence of a tensor T has been defined as

∇ · T = ∂i Tij. (2.47)

It is a vector whose jth component is

(∇ · T) j = ∂T1 j

∂x1
+ ∂T2 j

∂x2
+ ∂T3 j

∂x3
. (2.48)

Integrate this expression over all space:

∫
(∇ · T) j d3x =

∫
dx1dx2dx3

(
∂T1 j

∂x1
+ ∂T2 j

∂x2
+ ∂T3 j

∂x3

)

=
∫

dx2dx3T1 j +
∫

dx1dx3T2 j +
∫

dx1dx2T3 j

=
∫

d S1T1 j +
∫

d S2T2 j +
∫

d S3T3 j

=
∫

(dS · T) j ,

or
∫

∇ · Td3x =
∮

dS · T. (2.49)

This is the generalized Gauss’ theorem.
It is also possible to derive the following integral theorems:

∫
∇Vd3x =

∮
dSV (2.50)

∫
∇ f d3x =

∮
dS f (2.51)

3 C. W. Misner, K. S. Thorn, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, San
Francisco (1973).
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∫
∇ × Vd3x =

∮
dS × V (2.52)

∫

S

dS × ∇ f d3x =
∮

C

dl f (2.53)

∫

S

dS · ∇ × Ad3x =
∮

C

A · dl (2.54)

It seems intuitive that a physically measurable quantity should not care what
coordinate system it is referred to. We have shown that scalars, vectors, tensors, etc.,
things that we can associate with physical quantities, are invariant under rotations.
This is good!

There is another important type of coordinate transformation called an inversion.
It is also known as parity transformation. Mathematically, this is given by

x ′
i = −xi . (2.55)

An inversion is shown in Fig. 2.4.
The first coordinate system is “right-handed”; the second coordinate system is

“left-handed.” Consider the position vector r. In the unprimed coordinate system, it
is given by r = xi êi . In the primed (inverted) coordinate system, it is given by

r′ = x ′
i ê

′
i = (−xi ) (−êi ) = xi êi = r, (2.56)

so it is invariant under inversions. Such a vector is called apolar vector. (It is some-
times called a true vector.) We remark the gradient operator ∇ = êi∂i transforms
like a polar vector, since ∂ ′

i = −∂i .
Now consider the vector C, defined by C = A × B (or Ci = εi jk A j Bk), where

A and B are polar vectors, i.e., A and B transform according to A′
i = −Ai and

B ′
i = −Bi . Then under inversion, the components of C transform according to

C ′
i = εi jk A′

j B ′
k = εi jk

(−A j
)

(−Bk) = εi jk A j Bk = +Ci . (2.57)

Fig. 2.4 An inversion of the
Cartesian coordinate system
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Then

C′ = C ′
i ê

′
i = Ci (−êi ) = −C, (2.58)

so that C does not transform like a true vector under coordinate inversions. Such a
vector (that changes direction in space under coordinate inversion; see Fig. 2.4)
is called an axial vector (or pseudovector). Since it is defined as a vector (or
cross) product, it usually describes some process involving rotation. For exam-
ple, the vector area dSk = dxi × dx j is a pseudovector. However, notice that if
A is a polar vector and B is an axial vector, then C ′

i = −Ci , and C is a polar
vector.

The elementary volume is defined as dV = dx1 · dx2 × dx3 = εi jkdx1dx2dx3.
It is easy to see that under inversions, dV ′ = −dV ; the volume changes sign! Such
quantities are called pseudoscalars: they are invariant under rotations, but change
sign under inversions.

Again, it is intuitive that physical quantities should exist independent from coor-
dinate systems. How then to account for the volume? Apparently it should be con-
sidered a “derived quantity,” not directly measurable. For example, one can measure
directly the true vectors (i.e., lengths) dxi , but one has to compute the volume. This
renders as a pseudoscalar any quantity that expresses an amount of a scalar quantity
per unit volume; these are not directly measurable. This includes the mass density
ρ (mass/volume) and the pressure (internal energy/volume). (An exception is the
electric charge density, which is a true scalar.) Apparently, one can measure directly
mass and length (both true scalars), but must then infer the mass density.

The following is a list of some physical variables that appear in MHD, and their
transformation properties:

Time is a scalar.
Temperature, which has units of energy, is a scalar.
Mass density, ρ = M/V , is a pseudoscalar.
Pressure, p = ρkB T , is a pseudoscalar.
Velocity, Vi = dxi/dt , is a vector.
The vector potential A is a vector.
The magnetic flux,

∫
A · dx, is a scalar.

The magnetic field, B = ∇ × A, is a pseudovector.
The current density, μ0J = ∇ × B, is a vector. (Note that, since J is electric

charge per unit area, and area is a pseudoscalar, electric charge must be a
pseudoscalar.)

The Lorentz force density, fL = J × B, is a pseudovector.
The pressure force density, −∇ p, is a pseudovector.
The acceleration density, ρdV/dt , is a pseudovector.

Now, it is OK to express physical relationships by using pseudovectors and pseu-
doscalars. What is required is that the resulting expressions be consistent, i.e., we
do not end up adding scalars and pseudoscalars, or vectors and pseudovectors.
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Mass Conservation and the Equation
of Continuity

You are my density.
Crispin Glover, Back to the Future

We now begin the derivation of the equations governing the behavior of the fluid.
We will start by looking at the mass flowing into and out of a physically infinitesimal
volume element.

There are two “viewpoints,” and they are equivalent:

1. Eulerian: A volume element is fixed in space in the “laboratory” frame of refer-
ence.

2. Lagrangian: The surface of the volume element is co-moving with the fluid, in
the “fluid” frame of reference.

We will use whichever is most convenient.
First consider the Eulerian picture. The volume element dV is shown in Fig. 3.1.

Fig. 3.1 An Eulerian volume
element. Its boundaries are
fixed in space

P(x1, x2, x3) is the centroid of the volume element. The sides of the volume ele-
ment are fixed in space. Fluid can flow into and out of the volume element through
the sides.

Let the mass density at P(x1, x2, x3) be ρ(x1, x2, x3) (mass/volume). It is the
average (and nearly uniform) mass density throughout dV . The total mass contained
within dV is

M =
∫

ρdV =
∫

ρdx1dx2dx3. (3.1)

Schnack, D.D.: Mass Conservation and the Equation of Continuity. Lect. Notes Phys. 780,
19–24 (2009)
DOI 10.1007/978-3-642-00688-3 3 c© Springer-Verlag Berlin Heidelberg 2009
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Assume that there are no sources or sinks of mass within dV . Then d M/dt is the
rate at which mass enters or leaves through the surface d S.

A surface element dS is shown in Fig. 3.2.

Fig. 3.2 Eulerian surface
element, showing the velocity
vector V and the surface area
element vector dS

The surface area is d S, and n̂ is a unit vector normal (perpendicular) to the surface
(in an average sense). When dS is a side of a volume element dV , n̂ is assumed to
point out of the volume element (i.e., from inside to outside). The flux of mass
(mass/unit area/unit time) passing through a surface is ρV, where V is the fluid
velocity. It is a vector quantity (actually, a pseudovector, because of the presence
of ρ). Then the mass per unit time flowing through dS is ρV · dS = ρV · n̂d S, and
the total rate of flow of mass out of the volume dV is

∑
Faces

ρV · dS ⇒
∮

S

ρV · dS =
∮

S

ρV · n̂d S, (3.2)

where the integral is over the surface enclosing dV . Since this must be equal to
−d M/dt , we have

d M

dt
= d

dt

∫

V

ρdV = −
∮

S

ρV · n̂d S. (3.3)

For a fixed (Eulerian) surface, we can take the total time derivative inside the volume
integral as a partial derivative:

∫

V

∂ρ

∂t
dV = −

∮

S

ρV · n̂d S. (3.4)

By Gauss’ theorem,

∮

S

ρV · n̂d S =
∫

V

∇ · (ρV) dV , (3.5)

so that
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∫

V

[
∂ρ

∂t
+ ∇ · (ρV)

]
dV = 0. (3.6)

This expression must hold for every arbitrarily shaped volume; the only way that it
can be satisfied is if the integrand vanishes identically, or

∂ρ

∂t
= −∇ · (ρV) . (3.7)

This is called the continuity equation. It expresses conservation of mass in the Eule-
rian frame of reference.

We remark that Eq. (3.7) is a partial differential equation with four dependent
variables: ρ and the three components of V. If the velocity were known a priori,
the system would be closed and we could solve Eq. (3.7) for the evolution of ρ.
Problems in which the velocity field is fixed, or specified in advance, are called
kinematic. Problems where V is determined from other physical principles are called
dynamic, and the latter is the case of interest here. We therefore have three more
unknowns than we have equations; the problem is not closed. This problem of clo-
sure is of fundamental importance in MHD, and we will discuss it in more detail
later in this course.

We now describe conservation of mass in the Lagrangian picture. Here the vol-
ume element dV is co-moving with the fluid, as sketched in Fig. 3.3.

Fig. 3.3 A Lagrangian fluid
element. Its boundaries move
with the local fluid velocity

Every point on the surface and within the volume is moving with the local veloc-
ity V = dx/dt ; the coordinates of each “bit” of the volume element are thus time
dependent: xi = xi (t). The shape of the volume element can distort with time.
However, since each point on the boundary S moves with the fluid, no fluid can flow
across the surface, so that the total mass within the volume element is fixed in time:
d M/dt = 0, and mass is automatically conserved.

However, things are still complicated. As the volume element moves through
space, its total mass, as given by Eq. (3.1), remains constant, but since the total
volume of the element can change as it distorts due to fluid motions, the mass density
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must be considered to be a function of time. Conservation of mass is then stated as

d M

dt
= 0 = d

dt

∫

V

ρ(t)dx1(t)dx2(t)dx3(t). (3.8)

So, we not only need to calculate the change in ρ, but we need to account for the
change in the volume dV as it moves through space.

To this end, we introduce a “new” infinitesimal, δxi . The infinitesimal oper-
ator δ is taken to operate only on the spatial coordinates xi ; the notation d is
reserved for time. In all other respects, d and δ are the same. Equation (3.8) is
written as

d

dt

∫

V

ρ(t)δx1(t)δx2(t)δx3(t) = 0, (3.9)

and the time dependence of the coordinates is given by

dxi

dt
= Vi . (3.10)

Now time is the only independent variable. Differentiating under the integral sign in
Eq. (3.9), we have

0 =
∫ [

dρ

dt
δx1δx2δx3 + ρ

d

dt
(δx1δx2δx3)

]
,

=
∫ {

dρ

dt
δx1δx2δx3 + ρ

[
dδx1

dt
δx2δx3 + δx1

dδx2

dt
δx3 + δx1δx2

dδx3

dt

]}
,

=
∫ [

dρ

dt
δx1δx2δx3 + ρδx1δx2δx3

(
δV1

δx1
+ δV2

δx2
+ δV3

δx3

)]
, (3.11)

where we have used the fact that δ and d are both infinitesimals, along with
Eq. (3.10), to write d(δxi )/dt = δ(dxi/dt) = δVi . We recognize the last term in
brackets as ∇ · V. Then writing dV = δx1δx2δx3,

0 =
∫ [

dρ

dt
+ ρ∇ · V

]
dV . (3.12)

As with Eq. (3.6), since this must hold for arbitrary volume elements, we require

dρ

dt
+ ρ∇ · V = 0. (3.13)

This is the expression for conservation of mass in the Lagrangian frame of reference.
Equation (3.13), the Lagrangian expression, appears to be different from Eq. (3.7),

the Eulerian expression. In particular, how are we to interpret the time derivative
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d/dt that appears in Eq. (3.13)? Since these equations each express the law of con-
servation of mass, they must be consistent. Note that we can write
Eq. (3.7) as

∂ρ

∂t
+ ∇ · (ρV) = ∂ρ

∂t
+ V · ∇ρ + ρ∇ · V = 0, (3.14)

which will be consistent with Eq. (3.13) if we identify

dρ

dt
= ∂ρ

∂t
+ V · ∇ρ. (3.15)

Generally, the operator d/dt = ∂/∂t + V · ∇ is called the total time derivative
or the Lagrangian derivative. It measures the total change in a quantity associated
with a fluid element as it moves about in space. This can be seen as follows. The
Lagrangian change in the density in time dt consists of two parts, dρ = dρ1 + dρ2,
where dρ1 is the change in ρ during dt at a fixed point in space,

dρ1 = ∂ρ

∂t
dt, (3.16)

and dρ2 is the difference between densities separated by a distance dx, at the same
time t ,

dρ2 = dx · ∇ρ. (3.17)

The total change in ρ is therefore

dρ = ∂ρ

∂t
dt + dx · ∇ρ, (3.18)

so that

dρ

dt
= ∂ρ

∂t
+ V · ∇ρ. (3.19)

Of course, this result can also be obtained formally by applying the chain rule to
ρ = ρ [x(t), t], i.e.,

dρ

dt
= ∂ρ

∂t
+ ∂ρ

∂x
· dx

dt
= ∂ρ

∂t
+ V · ∇ρ,

but this provides little physical insight.
The term V · ∇ρ is called the advective derivative. It measures the change of ρ

in the direction of V. The terminology originated in weather and climate modeling,
where convection refers to vertical uplift driven by buoyancy and thermal forces
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and advection refers to wind-driven horizontal transport. The terminology has been
carried over to MHD, where it refers to all velocity-driven transport.

The term −ρ∇ · V measures the change in ρ due to compression or dilation of
the fluid element. This is illustrated in Fig. 3.4.

Fig. 3.4 Left: An expanding
flow for which ∇ · V > 0.
Right: A contracting, or
compressing, fluid element
for which ∇ · V < 0

In the figure on the left, ∇ · V > 0, the flow is diverging, there is net flow out
of the volume element, and the mass within the volume element is decreasing. In
the figure on the right, ∇ · V < 0, the flow is converging, there is net flow into the
volume element, and the mass within the volume element is increasing.

The continuity equation and conservation of mass are exactly the same in hydro-
dynamics and MHD.
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The Equation of Motion

The Force is with you, young Skywalker, but you are not a
Jedi yet.

Darth Vader, The Return of the Jedi

Newton’s law for a fluid element is

ρ
dV
dt

= F, (4.1)

where ρ is the mass density (mass per unit volume), V is the velocity of the fluid
element, and F is the force per unit volume acting on the element. The latter is
composed of two types: volumetric forces and surface forces.

Volumetric forces act throughout the volume of the fluid element. They can be
thought of as acting at the centroid. Examples are:

1. Gravity: Fg = ρg, where g is the gravitational acceleration. If the force is a
central force, then Fg = −∇Φ, where Φ is the gravitational potential.

2. Electromagnetic forces: Since the fluid can conduct electricity, it can have a cur-
rent density J = ∑

α nαqαVα (with the sum being over all species of ions and
electrons, and nα, qα, and Vα the number density, electric charge, and velocity
of species α, respectively), and, in principle, a net electric charge per unit vol-
ume, ρq . The electromagnetic force (per unit volume) are then the electric force,
Fq = ρqE (E is the electric field), and the Lorentz force, FL = J × B (B is the
magnetic field).

Surface forces are more complicated.1 Consider the forces acting on a surface S.
We assume the convention that the material in front of S exerts a force on the mate-
rial behind S that is given by

F = S · P (4.2)

or

Fi = Si Pi j . (4.3)

1 This discussion follows lecture notes by W. A. Newcomb (unpublished), 1975. The author was
privileged to attend these lectures.

Schnack, D.D.: The Equation of Motion. Lect. Notes Phys. 780, 25–29 (2009)
DOI 10.1007/978-3-642-00688-3 4 c© Springer-Verlag Berlin Heidelberg 2009
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We consider three orientations for S, along each of the three coordinate direc-
tions. If S = ê1,

F = P11ê1 + P12ê2 + P13ê3, (4.4)

which is a vector. Similarly, if S = ê2, then

F = P21ê1 + P22ê2 + P23ê3, (4.5)

and if S = ê3, then

F = P31ê1 + P32ê2 + P33ê3. (4.6)

It therefore takes nine numbers to define the force on the surface S. These are the
components of the stress tensor, Pi j .

The total surface force acting on a fluid element is the sum of the forces on its
faces. We want the total force acting on the volume. Since F has been defined as the
force exerted by the material in front of S acting on the material behind S, all of the
material within the element is behind the faces, and the net force is the negative of
the surface forces, i.e.,

F = −
∮

S

dS·P (4.7)

or, by Gauss’ theorem,

F = −
∫

V

∇ · PdV . (4.8)

As V → 0, we obtain the net force per unit volume as

f = −∇ · P. (4.9)

This is the volumetric equivalent of the surface forces. The equation of motion con-
sidering only surface forces is then

ρ
dV
dt

= −∇ · P. (4.10)

We will now prove that the stress tensor is symmetric, i.e., Pi j = Pji . Consider
the angular momentum per unit volume of fluid,

L = r × ρV. (4.11)
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Using Eq. (4.10), the total (i.e., Lagrangian) time rate of change of L for a fluid with
fixed volume V0 is

L̇ =
∫

V0

ρr × dV
dt

dV = −
∫

V0

r × ∇ · PdV , (4.12)

or, in Cartesian tensor notation,

L̇ i = −
∫

V0

εi jkr j (∂l Plk) dV . (4.13)

Since ∂lr j = δl j , we can write

r j (∂l Plk) = ∂l

(
r j Plk

)− Pjk, (4.14)

so that

L̇i = −
∫

V0

εi jk
[
∂l
(
r j Plk

)− Pjk
]

dV

= −
∫

V0

∂i
(
εi jkr j Plk

)
dV +

∫

V0

εi jk PlkdV

= −
∮

S0

d Slεi jkr j Plk +
∫

V0

εi jk PlkdV , (4.15)

where we have used Gauss’ theorem and S0 is the surface bounding V0. We recog-
nize the first term on the right-hand side of Eq. (4.15) as the total external torque
applied to the surface of the volume. The remaining term is the rate of change of
internal angular momentum of the fluid. In the absence of applied torque, we require
L̇ i = 0 or

∫

V0

εi jk PlkdV = 0, (4.16)

which can be written as
∫

V0

1

2

(
εi jk Pjk + εik j Pk j

)
dV =

∫

V0

1

2
εi jk
(
Pjk − Pk j

)
dV = 0. (4.17)

(The first expression comes from interchanging the dummy indices j and k; the sec-
ond follows from the properties of εi jk .) Since Eq. (4.17) must hold for an arbitrary
volume, we have Pjk = Pk j , which is the desired result.
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The symmetry of the stress tensor is a very general result; it can be considered
a general principle of physics.2 It is independent of the properties of the medium,
which can be solid, liquid, or gas (or even plasma). It is required to prevent the
internal angular momentum of the system from increasing without bound.

The stress tensor (indeed, any tensor) can always be decomposed as

P = pI − Π (4.18)

or

Pi j = pδi j − Πi j . (4.19)

The first term on the right-hand side is called the scalar pressure. The second term
is called the viscous stress tensor.

Including all the volumetric and equivalent volumetric forces, Eq. (4.1) becomes

ρ
dV
dt

= ρqE + J × B − ∇ p + ∇ · Π, (4.20)

which is the Lagrangian form of the equation of motion. The Eulerian form is

ρ

(
∂V
∂t

+ V · ∇V
)

= ρqE + J × B − ∇ p + ∇ · Π. (4.21)

As always, they are equivalent.
We now compute WV = V · FV, the work done on a volume element by the

viscous force FV = ∇ · Π:

WV = Vi∂ jΠ j i = ∂ j
(
ViΠ j i

)− Π j i∂ j Vi

or

WV = ∇ · (Π · V) − Π : ∇V. (4.22)

Then
∫

V0

WVdV =
∫

V0

∇ · (Π · V) dV −
∫

V0

Π : ∇VdV

=
∮

S0

dS · (Π · V) −
∫

V0

Π : ∇VdV . (4.23)

2 This discussion follows that of L. D. Landau and E. M. Lifschitz, Fluid Mechanics, Pergamon
Press, London, UK (1959).
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The first term on the right-hand side is the work done on the surface S; the second
term is the work done throughout the volume. In the absence of the surface term,
kinetic energy is lost from the fluid if Π : ∇V > 0; it must show up as internal
(thermal) energy. We therefore identify the volumetric viscous heating rate as

QV = Π : ∇V (4.24)

We remark that the equation of motion has introduced six new dependent vari-
ables; i.e., the six independent components of the stress tensor. This is a further
example of the closure problem first mentioned in Lecture 3.
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Lecture 5
Energy Flow

Energy falls just short of being joy.
Mason Cooley, City Aphorisms

The enumeration of the various sources and flows of energy is enabled by working
in the Lagrangian frame of reference; i.e., we consider a volume element that is
co-moving with the fluid. The heat input rate per unit volume is equal to the rate of
energy flow across the surface plus the volumetric heating rate, i.e.,

ρ
d Q

dt
= −∇ · q + RV , (5.1)

where Q is the heat per unit mass, q is the heat flux through the boundary, and

RV = Π : ∇V + ηJ 2 (5.2)

is the volumetric heating rate. The first term is the viscous heating rate, defined in
Lecture 4, and the second term is the Ohmic heating rate (J · E, where E is the
electric field, J is the current density, η is the electrical resistivity of the fluid, and
E = ηJ in the Lagrangian frame; Ohm’s law and the transformation properties of
the electric field will be discussed in Lecture 6).

We write the first law of thermodynamics (conservation of energy) as

d Q = pd

(
1

ρ

)
+ de, (5.3)

where d Q is the change in heat per unit mass, pd(1/ρ) is the PV work per unit
mass, and de is the change in energy per unit mass. Substituting this into Eq. (5.2),
we have

pρ
d

dt

(
1

ρ

)
+ ρ

de

dt
= −∇ · q + Π : ∇V + ηJ 2. (5.4)

Now,

d

dt

(
1

ρ

)
= − 1

ρ2

dρ

dt
= 1

ρ
∇ · V, (5.5)

Schnack, D.D.: Energy Flow. Lect. Notes Phys. 780, 31–33 (2009)
DOI 10.1007/978-3-642-00688-3 5 c© Springer-Verlag Berlin Heidelberg 2009



www.manaraa.com

32 Lectures in Magnetohydrodynamics

where we have used the Lagrangian form of the continuity equation. Then Eq. (5.4)
becomes

ρ
de

dt
= −p∇ · V − ∇ · q + Π : ∇V + ηJ 2. (5.6)

The term on the left-hand side is the rate of change of energy per unit volume. It is
equal to the sum of the work done to expand or compress the fluid element, the rate
of heat flow through the surface, and the volumetric heating rate due to viscous and
resistive processes. We can again use the continuity equation to write

ρ
de

dt
= d

dt
(ρe) + ρe∇ · V (5.7)

or, in the Eulerian frame,

ρ
de

dt
= ∂

∂t
(ρe) + ∇ · (ρeV) . (5.8)

Then the equation describing energy and heat flow in the Eulerian frame of
reference is

∂

∂t
(ρe) = −∇ · (ρeV) − p∇ · V − ∇ · q + Π : ∇V + ηJ 2. (5.9)

Not surprisingly (and certainly not very originally), Eq. (5.9) is called the energy
equation.

To an excellent approximation, a plasma behaves as an ideal gas, i.e., the energy
depends only on the pressure. This relationship is written as

ρe = p

Γ − 1
, (5.10)

where Γ is the adiabatic index. For a plasma Γ = 5/3. Using Eq. (5.10), and the
identity ∇ · (pV) + (Γ − 1) p∇ · V = Γp∇ · V + V · ∇ p, we obtain evolutionary
equations for the pressure in both the Eulerian frame,

∂p

∂t
+ V · ∇ p = −Γp∇ · V + (Γ − 1)

[−∇ · q + Π : ∇V + ηJ 2
]
, (5.11)

and the Lagrangian frame

dp

dt
= −Γp∇ · V + (Γ − 1)

[−∇ · q + Π : ∇V + ηJ 2
]
. (5.12)

The first term on the right-hand side of Eq. (5.12) represents reversible PV work.
The second term represents irreversible heating processes. If these are absent, we
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say that the fluid is ideal. In that case, we can again use the continuity equation to
eliminate ∇ · V and obtain

d

dt

(
p

ρΓ

)
= 0, (5.13)

so that as the fluid element moves about in space it obeys the so-called adiabatic law
p/ρΓ = constant.

We can then summarize the results of Lectures 3, 4, and 5 by stating the fluid
equations in Eulerian form:

∂ρ

∂t
+ ∇ · ρV = 0, (5.14)

ρ

(
∂V
∂t

+ V · ∇V
)

= ρqE − ∇ p + J × B + ∇ · Π, (5.15)

and

∂p

∂t
+ V · ∇ p = −Γp∇ · V + (Γ − 1)

[−∇ · q + Π : ∇V + ηJ 2
]
. (5.16)

Note that the advective derivative V · ∇ appears prominently in all the equations. It
will also appear in the equations that describe the dynamics of the electromagnetic
fields.

We again remark that Eqs. (5.14, 5.15, 5.16) are not closed, i.e., there are more
unknowns than there are equations. In particular, we will have to say something
about J, B, Π, and q. The first will come from electrodynamics. The rest require a
further discussion of closures. These are the next two topics.
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Lecture 6
The Electromagnetic Field

Mysterious affair, electricity.
Samuel Beckett, Ends and Odds

The electromagnetic fields are E, the electric field, and B, the magnetic flux density
or magnetic field. The sources of these fields are the electric charge density, ρq , and
the electric current density, J. Together, these must satisfy Maxwell’s equations:

Faraday’s law:

∂B
∂t

= −∇ × E. (6.1)

Ampére’s law:

μ0J = ∇ × B − 1

c2

∂E
∂t

. (6.2)

Gauss’ law:

∇ · E = ρq

ε0
. (6.3)

Absence of magnetic monopoles:

∇ · B = 0. (6.4)

These equations are written in MKS units. This convention will be used throughout.
In these units, the square of the speed of light is

c2 = 1

ε0μ0
. (6.5)

The constant ε0 is called the permittivity of free space and the constant μ0 is called
the permeability of free space.

The dynamics of the electromagnetic fields and the fluid are coupled through
Ohm’s law,

E′ = ηJ, (6.6)

Schnack, D.D.: The Electromagnetic Field. Lect. Notes Phys. 780, 35–38 (2009)
DOI 10.1007/978-3-642-00688-3 6 c© Springer-Verlag Berlin Heidelberg 2009
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where η is the electrical resistivity, which is to be considered a material property of
the fluid, and E′ is the electric field as seen by a conductor moving with velocity V.
According to the theory of relativity, this is given by

E′ = E + V × B√
1 − V 2

c2

, (6.7)

where E is the electric field in the stationary frame.
Maxwell’s equations and Ohm’s law are Lorentz invariant, i.e., they are physi-

cally accurate to all orders of V 2/c2. However, the fluid equations (5.14, 5.15, 5.16)
are Gallilean invariant; they are physically accurate only to O(V/c). The two sys-
tems of equations are incompatible as presently formulated. So, we either need to
make the fluid equations relativistic (not a savory task!) or need to render Maxwell’s
equations’ Gallilean invariant. As stated in the Introduction (Lecture 1), in MHD
we will consider only low frequencies, i.e., V 2/c2 = (ωL/c)2 << 1. We therefore
choose the latter course and seek a form of Maxwell’s equations that is only accurate
through O(V/c).

Consider Ohm’s law, Eq. (6.6). From Eq. (6.7), when V 2/c2 << 1 we can write
the electric field in the moving frame as

E′ = (E + V × B)

(
1 − 1

2

V 2

c2
+ . . . ..

)

= E + V × B + O

(
V 2

c2

)
. (6.8)

Ohm’s law then becomes

E + V × B = ηJ, (6.9)

which is the proper MHD form. It is sometimes called the resistive Ohm’s law.
When η = 0, it is called the ideal MHD Ohm’s law. Note that, for this ideal MHD,
the electric field scales like E0 ∼ V0 B0 or V0 ∼ E0/B0. We will find these useful in
a moment.

Now consider Ampére’s law, Eq. (6.2). The ratio of the two terms on the right-
hand side is, approximately,

∣∣∣∣
1

c2
∂E
∂t

∣∣∣∣
|∇ × B| ∼ E0ω/c2

B0/L
∼ V0ωL

c2
∼ V 2

0

c2
<< 1, (6.10)

where we have set V0 ∼ ωL . We can therefore ignore the second term (the displace-
ment current) compared with the first, and the low-frequency version of Ampére’s
law is
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μ0J = ∇ × B. (6.11)

In MHD, this equation defines the current density.
Next consider Gauss’ law, Eq. (6.3). When combined with the ideal MHD Ohm’s

law, we have

ρq = −ε0∇ · (V × B) �= 0, (6.12)

so that MHD allows for a non-vanishing charge density. This net charge must arise
from a difference Δn between the local number densities of positive and negative
charges. Then we can write Δn/n0 ∼ E0ε0/(n0Le) ∼ ε0V0 B0/n0Le, where n0 is
the average number density of positive and negative charges. Then using Eq. (6.5)
to eliminate ε0, we find

Δn

n0
∼ V0

c2

B2
0

μ0n0 M

M

eB0

1

L
, (6.13)

where M is the mass of the individual positively charged particles (ions). We antic-
ipate future results and identify V 2

A ≡ B2
0/(μ0n0 M) as the Alfvén speed. (This turns

out to be the propagation speed of the shear waves briefly described in Lecture 1.)
We also identify Ω = eB0/M as the ion gyro-frequency (the frequency at which the
individual ions orbit the magnetic field lines). Then setting V0 ∼ VA, we have

Δn

n0
∼ V 2

0

c2

V0

ΩL
. (6.14)

Finally, identifying VA/ΩL ≡ di/L (where di = c/ωpi is the ion skin depth and
ω2

pi = n0e2/ε0 M is the square of the plasma frequency), we can estimate the size of
the excess electric charge as

Δn

n0
∼ di

L

V 2
0

c2
, (6.15)

which is << V 2
0 /c2 since di/L << 1. This result is called quasi-neutrality; it is a

consequence of the low-frequency assumption.
However, the charge density cannot be ignored if the parameters are such that

Δn/n0 ∼ V0/c. This can occur if (di/L)(V0/c) ∼ 1 or, on length scales, L ∼
(V0/c)di . If we estimate V ∼ Vthi ∼ √

T/M , then L ∼
√

ε0T/n0e2 = λD, the
Debye length. This is assumed to be much smaller than any macroscopic scale
length.

The virtual vanishing of the electric charge density does not imply that the elec-
trostatic field vanishes. In steady state (∂/∂t = 0), Faraday’s law requires ∇×E = 0
or E = −∇φ, and so the electric field is completely electrostatic, and can be large.
Instead, regions of smooth field (where ∇ · E ∼ 0) are “patched together” across
layers with finite charge density and thickness that is vanishingly small, i.e., O(λD).
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This is reminiscent of (although not completely analogous to) the role of shock
waves in hydrodynamics.

Finally, it can be shown that the ratio of the electric force to the Lorentz force is

∣∣ρqE
∣∣

|J × B| ∼ V 2

c2
<< 1, (6.16)

so that it can be dropped from the equation of motion. The charge density therefore
never enters the MHD equations. However, if you ever want to know what it is, all
you have to do is compute ρq = −ε0∇ · (V × B) (at least in ideal MHD).

In Eulerian form, the final equations of the MHD model are
Equations for the fluid:

∂ρ

∂t
+ ∇ · ρV = 0, (6.17)

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇ p + J × B + ∇ · Π, (6.18)

∂p

∂t
+ V · ∇ p = −Γp∇ · V + (Γ − 1)

[−∇ · q + Π : ∇V + ηJ 2
]
. (6.19)

Equations for the electromagnetic fields:

∂B
∂t

= −∇ × E, (6.20)

μ0J = ∇ × B. (6.21)

Ohm’s law, which couples the fluid and the fields:

E + V × B = ηJ. (6.22)

Equations (6.20) and (6.21) are sometimes called the “pre-Maxwell equations,”
because they represent the state of knowledge of the electromagnetic field before
Maxwell’s introduction of the displacement current.

Equations (6.17, 6.18, 6.19, 6.20, 6.21, 6.22) are 14 equations in 27 unknowns: ρ

(1 unknown), V (3), p (1), Π (9), J (3), B (3), E (3), q (3), and η (1). The conditions
∇ · B = 0 implied by Faraday’s law, and ∇ · J = 0 implied by Ampére’s law,
either increase the number of equations by two or decrease the number of unknowns
by two, depending on your point of view. So, we need expressions for 13 of the
variables in terms of the other 14. This is the problem of closure. It will be discussed
next.
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Closures

A closed mouth catches no flies.
Miguel De Cervantes, Don Quixote

We have just seen that the MHD equations constitute 14 equations in 27 unknowns.
These can be reduced to eight equations by substituting for J from Ampére’s law
[Eq. (6.21)] and E from Ohm’s law [Eq. (6.22)]. The result is

∂ρ

∂t
+ ∇ · ρV = 0, (7.1)

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇ p + 1

μ0
(∇ × B) × B + ∇ · Π, (7.2)

∂p

∂t
+ V · ∇ p = −Γp∇ · V + (Γ − 1)

[−∇ · q + Π : ∇V + ηJ 2
]
, (7.3)

and

∂B
∂t

= ∇ ×
(

V × B − η

μ0
∇ × B

)
. (7.4)

We take ρ, p, V, and B to be the primary dependent variables. Then in order
to close the equations (i.e., have as many unknowns as equations), we require
expressions for the stress tensor, the heat flux, and the resistivity. These are usually
expressed as the functional relations Π(ρ, V, B) (9 variables), q(p, ρ, B) (3 vari-
ables), and η(p, ρ) (1 variable), so that we require 13 additional closure relations.
The symmetry of the stress tensor, Πi j = Π j i , eliminates three unknowns and
reduces the number of required closure relations to ten. These generally are obtained
from a knowledge of the material properties of the fluid, and must therefore come
from outside the framework of the fluid model.

However, it is possible to say some more general things about the form of the
stress tensor.1 First, we consider the case of an unmagnetized fluid, i.e., hydrody-
namics. We know that this stress must arise from internal friction between different

1 This discussion follows that of L. D. Landau and E. M. Lifschitz, Fluid Mechanics, Pergamon
Press, London, UK (1959).

Schnack, D.D.: Closures. Lect. Notes Phys. 780, 39–42 (2009)
DOI 10.1007/978-3-642-00688-3 7 c© Springer-Verlag Berlin Heidelberg 2009
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parts of the fluid that are in relative motion. For an isotropic medium, a general form
for the components of Π can be deduced from the following considerations:

1. Π = 0 if there is no relative motion between the different parts of the fluid. This
implies that Πi j ∼ (∂i Vj

)α
or Π ∼ (∇V)α. If ∇V is “small,” we expect a linear

relationship (α = 1), so Π ∼ ∇V.
2. Π = 0 when ∇V = 0, so there can be no terms that are independent of ∇V.
3. Π = 0 for rigid body rotation, i.e., when V = Ω × r with constant Ω, since then

there is then no relative motion of the fluid elements.
4. Π must be symmetric (stated previously).

It turns out that the tensor (dyadic) e = ∇V +∇VT satisfies these constraints, so
that Πi j ∼ ∂i Vj + ∂ j Vi . The most general tensor that satisfies this condition is

Πi j = a
(
∂i V j + ∂ j Vi

)+ b∂l Vlδi j (7.5)

or, in dyadic notation, Π = a(∇V + ∇VT ) + b(∇ · V)I. It is conventional to write
this as Π = μW, where the dynamic viscosity μ(ρ, p) is a property of the medium,
and

W = ∇V + ∇VT − 2

3
I∇ · V, (7.6)

is called the rate of strain tensor. A relationship of the form stress ∼ strain (such
as Π = μW) is called Hooke’s law. A fluid is therefore an example of an elastic
medium.

For the special case μ = constant, the viscous force density Fμ = ∇ · Π can be
written as

Fμi = μ∂ j

(
∂i V j + ∂ j Vi − 2

3
∂l Vlδi j

)

= μ

(
∂ j∂ j Vi − 2

3
∂i∂l Vl

)

or Fμ = μ

[
∇2V − 2

3
∇ (∇ · V)

]
. (7.7)

For the further special case of incompressible flow, ∇ · V = 0 and we obtain the
especially simple form

Fμ = μ∇2V. (7.8)

Under these circumstances, it is common to write the viscous force per unit mass
(Fμ/ρ) as ν∇2V, where ν = μ/ρ is the kinematic viscosity. It has the units of
a diffusion coefficient, L2/T . The form of Eq. (7.8) is widely used in theory and
computation, often when μ �= constant or ∇ ·V �= 0. This is not physically justified.
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When the fluid is magnetized (B �= 0), it is not isotropic and the preceding
discussion must be generalized. For an anisotropic medium, the general comments
relating to the form of the stress tensor still apply (i.e., stress ∼ strain), except that
the simple relationship Π = μW is modified according to

Πi j = Ei jkl W jl, (7.9)

which is called the generalized Hooke’s law. The quantity Ei jkl is a fourth-rank
tensor called the elastic constant tensor, whose specific form depends on the fluid
properties and must be obtained from considerations outside of the fluid model. So,
in MHD, things are much more complicated than they are in hydrodynamics.

Expressions for Π have been derived by Braginskii.2 For the case when the field
is strong, the collisionality is large, and the mean free path is small; specifically,
νc/Ω << 1 (with νc the collision frequency) and λf/L << 1 (with λf the mean free
path). This involves calculations that are heroic in scale, and we will state the results
here without proof. The viscous stress is decomposed into three “components”: par-
allel, Π‖ = b̂b̂ · Π (with b̂ = B/B); “cross,” Π∧ = (b̂ × I

) · Π; and perpendicular,
Π⊥ = b̂× (b̂ × I

) ·Π. The resulting expressions are complicated, and we give them
here for reference only.

For the parallel component,

Π‖ = 3

2
η0
(
b̂ · W · b̂

) (
b̂b̂ − 1

3
I

)
, (7.10)

where η0 ∼ p/νc. This coefficient diverges when νc → 0, indicating that the fluid
model is no longer strictly valid in the limit of low collisionality. (Note that when
there is no magnetic field this expression reduces to Π‖ = η0W, since then the fluid
is isotropic and b̂b̂ → I.)

For the “cross” component,

Π∧ = p

4Ω

[(
b̂ × W

) · (I + 3b̂b̂
)− (I + 3b̂b̂

) · (W × b̂
)]

, (7.11)

This is called the gyro-viscous stress. The second term in the square brackets is
just the transpose of the first term, as is required for the symmetry of Π∧. Note
that Eq. (7.11) is independent of the collision frequency νc. It is therefore non-
dissipative. The gyro-viscous stress becomes important when the Larmor radius of
the ions becomes “finite” (but still small compared with the size of a fluid element);
it is called an “FLR” (for finite Larmor-, or gyro-, radius) effect. It represents a
completely reversible flux of momentum due to the gyro-motion of the individual
particles.

2 The original reference is S. I. Branginsii, “Transport Processes in Plasmas”, in Reviews of Plasma
Physics, M. A. Leontovich (ed.), Consultants Bureau, New York (1965). For further discussion and
some more recent developments, see Per Helander and Dieter J. Sigmar, Collisional Transport in
Magnetized Plasmas, Cambridge University Press, Cambridge (2002).
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For the perpendicular component,

Π⊥ = η1

{(
I − b̂b̂

) · W · (I − b̂b̂
)− 1

2

(
I − b̂b̂

) (
I − b̂b̂

)
: W

+ 4
[(

I − b̂b̂
) · W · b̂b̂ + b̂b̂ · W · (I − b̂b̂

)]}
, (7.12)

where η1 ∼ pνc/Ω
2. The coefficient vanishes in the limit of low collisionality,

so Eq. (7.12) is generally ignored in the analysis of hot fusion plasmas. However,
it survives in the fluid limit. (The use of the symbol η for the dynamic viscosity
is common in hydrodynamics. In MHD we reserve this symbol for the electrical
resistivity.)

We require a closure for the heat flux, q. As is the case for the stress tensor, in a
strongly magnetized plasma it can be decomposed as q = q‖ + q∧ + q⊥, where

q‖ = −κ‖b̂b̂ · ∇T, (7.13)

q∧ = −κ∧b̂ × ∇T, (7.14)

and

q⊥ = −κ⊥
(
I − b̂b̂

) · ∇T, (7.15)

where the temperature is given by the equation of state T = p/ρ. The coefficients
are called the thermal conductivities. As was the case with the stress tensor, κ‖ ∼
1/νc, κ∧ is independent of νc, and κ⊥ ∼ νc. The ratio of parallel to perpendicular
conductivity diverges like 1/ν2

c , so the heat flux can become highly anisotropic in
the low-collisionality limit. (This proves true in spite of the fact that the expression
for q‖ is no longer valid.) As with Π∧, the “cross” heat flux q∧ is an FLR effect and
is non-dissipative. It represents a reversible flux of heat due to the gyro-motion of
the individual particles.

We still require a closure for the electrical resistivity η. This is generally taken to
be a known function of the temperature T . Its particular form is not important for
MHD.

We emphasize that the closures presented here are valid only in the regime of
large collisionality and strong magnetic field. The derivation of closure expressions
for the case of low collisionality and long mean free path is an important topic of
current plasma physics research, and there is no consensus regarding the correct
result.

With closure expressions such as those presented in this lecture, Eqs. (7.1, 7.2,
7.3, 7.4) are eight partial differential equations in the eight unknowns ρ, p, V, and B,
and together constitute the MHD equations. If we set q = 0 and Π = 0, we obtain
the resistive MHD model. If we further set η = 0 we obtain the ideal MHD model.
Ideal and resistive MHD will be the topics of the remainder of this course.
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Conservation Laws

Conservation must come before recreation.
Prince Charles of England, July 5, 1989

The general form of a conservation law is

∂Ui jk...

∂t
= − ∂

∂xm
Fmi jk..., (8.1)

where Ui jk... is a tensor of rank N and Fmi jk... is a tensor or rank N + 1. Integrating
over the volume and applying Gauss’ theorem, we have

∂

∂t

∫

V0

Ui jk...dV =
∮

S0

d Sm Fmi jk..., (8.2)

which expresses the conservation of the volume integral of Ui jk.... The tensor Fmi jk...

is the flux of Ui jk... in the direction of xm ; the surface integral expresses the total flux
through the bounding surface.

For example, if N = 0, we have the scalar conservation law

∂U

∂t
= −∇ · F, (8.3)

where U is a scalar and F is a vector. We have already encountered one of these in
the continuity equation, which expresses the conservation of mass. If N = 1, we
have the vector conservation law

∂U
∂t

= −∇ · F, (8.4)

where U is a vector and F is a second-rank tensor (or, equivalently, dyad). The
quantity Fi j is the flux of Ui in the x j direction. This can be continued ad infinitum.

The MHD equations can be written in the form of conservation laws that express
the physical principles of conservation of mass, momentum, and energy.

As mentioned above, we already have the law of conservation of mass:

∂ρ

∂t
= −∇ · ρV. (8.5)

Schnack, D.D.: Conservation Laws. Lect. Notes Phys. 780, 43–47 (2009)
DOI 10.1007/978-3-642-00688-3 8 c© Springer-Verlag Berlin Heidelberg 2009
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The quantity ρV is called the mass flux.
We now obtain the law of conservation of momentum. This will be of the form

∂ρV
∂t

= −∇ · T, (8.6)

where ρV is the momentum per unit volume and T is called the total stress tensor.
We have seen that the equation of motion (Newton’s law) is

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇ · (pI − Π) + J × B. (8.7)

The first term on the right-hand side is already in conservation form. We transform
the left-hand side according to

ρ
∂V
∂t

= ∂ρV
∂t

− V
∂ρ

∂t
= ∂ρV

∂t
+ V∇ · ρV (8.8)

and

∇ · ρVV = V∇ · ρV + ρV · ∇V. (8.9)

We have used the continuity equation to obtain the second equality in Eq. (8.8).
Then we have

∂ρV
∂t

+ ∇ · ρVV = −∇ · (pI − Π) + J × B. (8.10)

Consider the second term on the right-hand side. Using Cartesian tensor notation,

(J × B)i = 1

μ0
ε jkiε jlm Bk∂l Bm

= 1

μ0
(Bl∂l Bi − Bm∂i Bm) . (8.11)

Now Bl∂l Bi = ∂l (Bl Bi ), since ∂l Bl = 0 (∇ · B = 0) and Bm∂i Bm = ∂l
(
B2δli/2

)
,

so we have

(J × B)i = 1

μ0
∂l

(
Bl Bi − 1

2
B2δli

)
(8.12)

or, in coordinate-free vector notation,

J × B = 1

μ0
∇ ·
(

BB − 1

2
B2I

)
. (8.13)
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The final result is in the conservation form of Eq. (8.6), with

T = ρVV − 1

μ0
BB +

(
p + 1

2μ0
B2

)
I − Π. (8.14)

Note that T is symmetric, as is required of a proper stress tensor. The component
Ti j is the total flux of the jth component of momentum in the direction xi .

The tensor ρVV is called the Reynolds’ stress; ρVi Vj is the rate at which the
momentum component ρVj is carried through surface element d Si by velocity com-
ponent Vi . We recognize P = pI − Π from our previous discussion as the hydrody-
namic stress tensor. The tensor TM = 1

μ0

(
1
2 B2I − BB

)
is called the Maxwell stress

tensor. Note that the magnetic field transports (or carries) momentum. The quantity
p + B2/2μ0 is the total pressure. The second contribution is called the magnetic
pressure; the magnetic field resists compression, just like the fluid pressure. The
tensor BB/μ0 is called the hoop stress. We will see that it resists shearing motions.

Conservation of angular momentum, L = x×ρV, follows directly from the form
of Eq. (8.6):

∂L
∂t

= −x × ∇ · T. (8.15)

Using Cartesian tensor notation, the right-hand side of Eq. (8.15) can be written as

(x × ∇ · T)i = εi jk x j∂m Tmk = εi jk
[
∂m
(
x j Tmk

)− δmj Tmk
]

= ∂m
(
εi jk x j Tmk

)− εimk Tmk . (8.16)

The last term in Eq. (8.16) vanishes because T is a symmetric tensor. Then ∂Li/

∂t = −∂mLmi , where

Lmi = Tmkεi jk x j = εi jk x j Tmk = εi jk x j Tkm = (x × T)im

= (x × T)T
mi , (8.17)

and we have again used the symmetry of T. Conservation of angular momentum is
therefore expressed as

∂L
∂t

= −∇ · [(x × T)T
]
. (8.18)

The total energy is the sum of the kinetic, magnetic, and internal energies:

u = 1

2
ρV 2 + B2

2μ0
+ ρe. (8.19)
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To obtain the law of conservation of energy, we work in the Lagrangian frame. We
first consider the rate of change of kinetic energy. The scalar product of V with the
equation of motion is

ρ
d

dt

(
1

2
V 2

)
= −V · ∇P + V · J × B. (8.20)

Using the Lagrangian form of the continuity equation, the identity V · ∇P = ∇ ·
(P · V) − P : ∇V, and interchanging terms in the second term on the right-hand
side, this becomes

d

dt

(
1

2
ρV 2

)
+ 1

2
ρV 2∇ · V = −∇ · (P · V) + P : ∇V − J · V × B. (8.21)

We can use the resistive form of Ohm’s law to eliminate V × B in favor of J and E.
Then writing ρV 2∇ · V = ∇ · (ρV 2V) − V · ∇ (ρV 2

)
and using the definition of P,

d

dt

(
1

2
ρV 2

)
+ ∇ ·

(
1

2
ρV 2V

)
− V · ∇

(
1

2
ρV 2

)

= −∇ · (P · V) + p∇ · V − Π : ∇V + J · E − ηJ 2. (8.22)

If we now transform to the Eulerian frame, the last term on the left-hand side can-
cels, and we obtain the final expression for the rate of change of kinetic energy:

∂

∂t

(
1

2
ρV 2

)
= − ∇ ·

[(
1

2
ρV 2I + P

)
· V
]

︸ ︷︷ ︸
flux through surface

+ p∇ · V︸ ︷︷ ︸
PV work

+ J · E︸︷︷︸
EM work

− Π : ∇V︸ ︷︷ ︸
viscous dissipation

− ηJ 2

︸︷︷︸
resistive dissipation

. (8.23)

Note that this is not yet a conservation law. The last four terms act as sources and
sinks of kinetic energy. They must show up elsewhere.

The calculation of the rate of change of magnetic energy is relatively straightfor-
ward. Taking B the induction equation, and using B·∇×E = ∇·(E × B)+E·∇×B
along with Ampére’s law, we find

∂

∂t

(
B2

2μ0

)
= −∇ ·

[
1

μ0
E × B

]

︸ ︷︷ ︸
Poynting flux

− J · E︸︷︷︸
EM work

. (8.24)
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We already have an expression for the rate of change of internal energy:

∂

∂t
(ρe) = −∇ · (ρeV)︸ ︷︷ ︸

flux

− p∇ · V︸ ︷︷ ︸
PV work

− ∇ · q︸︷︷︸
heat flow

+ Π : ∇V︸ ︷︷ ︸
viscous heating

+ ηJ 2

︸︷︷︸
resistive heating

. (8.25)

The law of conservation of energy is obtained by adding Eqs. (8.23), (8.24), and
(8.25). All the sources and sinks cancel and the result is

∂u

∂t
= −∇ ·

{[(
ρe + 1

2
ρV 2

)
I + P

]
· V + 1

μ0
E × B + q

}
. (8.26)

Another conserved quantity is the magnetic flux density,

∂B
∂t

= −∇ × E. (8.27)

We remark that this can be written in the form of Eq. (8.1) as

∂ Bi

∂t
= −εi jk∂ j Ek = −∂ j

(
εi jk Ek

) = −∂ j
(
ε jki Ek

) = −∂ j Fji . (8.28)

The tensor Fji is formally the flux of Bi in the direction of x j . Note that Fji is
completely antisymmetric, i.e., Fi j = εik j Ek = −ε jki Ek = −Fji by the properties
of ε jki . For the case of ideal MHD, then Ek = −εkmnVm Bn , so Fi j = Bi Vj − B j Vi

and

∂B
∂t

= −∇ · (BV − VB) . (8.29)

Recall that B is a pseudovector; Eq. (8.29) is an example of a pseudovector conser-
vation law. The conserved quantity is the magnetic flux through an area element,
dΦ = B · dS, which is a true scalar (since both B and dS = dl1 × dl2 are pseudo-
vectors). The appropriate integral theorems are

dΦ

dt
= −

∫

S

∇ × E · dS = −
∮

C

E · dl (8.30)

and

d

dt

∫

V

BdV = −
∮

S

dS × E. (8.31)

Note that the evolution of B̄, the volume average of B, is completely determined by
the tangential component of E in the bounding surface.
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Lecture 9
Ideal MHD and the Frozen Flux Theorem

And moveth all together, if it moves at all.
William Wordsworth, Resolution and Independence

We have just derived the “complete” MHD fluid model. We now consider briefly a
simpler model that is obtained by ignoring Π and q and setting η = 0. (Note that
this is a form of closure.) The medium is thus a perfect electrical conductor and
has no viscosity or thermal conductivity. This is a highly idealized situation, not
attainable in nature; it is called ideal MHD. However, it turns out that ideal MHD
describes to a remarkably good approximation many of the dynamical properties of
hot, strongly magnetized plasmas. This is primarily because most hot plasmas are
excellent (although not perfect) conductors of electricity. Ideal MHD is thus of con-
siderable interest. Under these circumstances, the equations of the model reduce to

∂ρ

∂t
= −∇ · ρV, (9.1)

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇ p + 1

μ0
(∇ × B) × B, (9.2)

∂p

∂t
= −V · ∇ p − Γp∇ · V, (9.3)

and

∂B
∂t

= −∇ × (V × B) . (9.4)

These are eight equations in the eight unknowns ρ, p, V, and B. We remark that, in
this case, Ohm’s law is

E = −V × B. (9.5)

We now derive the most important property of ideal MHD. Consider a closed
curve C within the fluid, and let every pointon the curve be moving with the local

Schnack, D.D.: Ideal MHD and the Frozen Flux Theorem. Lect. Notes Phys. 780, 49–53 (2009)
DOI 10.1007/978-3-642-00688-3 9 c© Springer-Verlag Berlin Heidelberg 2009
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fluid velocity. We say that C is co-moving with the fluid, in the Lagrangian sense.
Let S be a surface bounded by C . Define

Ψ =
∫

S

B · dS (9.6)

as the flux through S. We ask how Ψ changes as C moves with the fluid. As we
discussed regarding the Lagrangian change in mass density, dΨ consists of two
parts:

1. dΨ1, due to the changes in B with C (and S) held fixed, i.e.,

(
dΨ

dt

)

1

=
∫

S

∂B
∂t

· dS = −
∫

S

∇ × E · dS = −
∮

C

E · dl; (9.7)

2. dΨ2, the amount of magnetic flux swept out by C as it moves with the fluid.
This is calculated as follows. As S moves about, each line element comprising
it moves a distance Vdt , and sweeps out a lateral area dS = Vdt × dl. This is
shown in Fig. 9.1.

Fig. 9.1 Computing the magnetic flux through a volume element swept out by a surface moving
with the fluid

The flux through this area is dΨ2 = B · dS = B · V × dldt , so that

(
dΨ

dt

)

2

=
∮

C

B · V × dl = −
∮

C

V × B · dl, (9.8)

where we have used the properties of the triple vector product.
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The total rate of change of flux through C is then

dΨ

dt
=
(

dΨ

dt

)

1

+
(

dΨ

dt

)

2

= −
∮

C

E · dl −
∮

C

V × B · dl

= −
∮

C

(E + V × B) · dl. (9.9)

However, in ideal MHD, E + V × B = 0 [see Eq. (9.5)], so that dΨ/dt = 0.
We conclude that in ideal MHD, the magnetic flux through any co-moving closed
circuit remains constant. This important result is called the frozen flux condition.
It means that the field lines can be thought of as being attached to the fluid (and
vice versa); the fluid cannot move across the magnetic field. (However, the fluid is
free to slide along B.) A perpendicular velocity will induce an electric field through
E = −V × B. This will cause a change in B through Faraday’s law that is sufficient
to make the field lines appear to move with the fluid. If there are both electric and
magnetic fields, there will be a perpendicular velocity given by

V⊥ = E × B
B2

. (9.10)

This is sometimes called the MHD velocity.
Now consider a volume whose lateral sides are everywhere parallel to the mag-

netic field, as shown in Fig. 9.2.

Fig. 9.2 A flux tube whose lateral sides are everywhere parallel to the magnetic field

By construction, dΨ1 = dΨ2 = dΨ. If we now consider the case where the volume
is long and thin, and make the cross-sectional area infinitesimal, then the volume
is called a flux tube. Since in ideal MHD the magnetic field is co-moving with the
fluid, the flux tubes also move with the fluid and the flux through every flux tube in
the fluid remains constant as the tube moves about in space. This in turn implies that
the magnetic field lines cannot change their topology, or connectivity, since doing
so would require violation of the integrity of fluid elements.
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If at t = 0 we start at a point x0(0) = (x0(0), y0(0), z0(0)), and integrate the field
line equations

dx

Bx
= dy

By
= dz

Bz
= dl

B
(9.11)

for a distance L , we arrive at a point x1(0) = (x1(0), y1(0), z1(0)); the field line
can be thought of as a mapping x0 ⇒ x1. During a time Δt , these two points will
have moved to x0(Δt) and x1(Δt) according to dxi/dt = Vi . If we then integrate
Eq. (9.11) starting from the point x0(Δt), in ideal MHD the trajectory of this field
line must also pass through x1(Δt), since each point on the field line can be thought
of as moving with the local fluid velocity. Thus, in ideal MHD, the mapping x0(t) ⇒
x1(t) is valid at all times. We say that a field line (or flux tube) retains its identity for
all times, i.e., again, its topology cannot change.

We comment on the boundary conditions for ideal MHD. We consider the bound-
ary of the domain as a “wall” with a unit normal vector n̂. From electromagnetic
theory, we know that the tangential component of E and the normal component of
B must be continuous across an interface. Applying these across the boundary, we
have

Etan|W ≡ n̂ × E|W is continuous (9.12)

and

Bn|W ≡ B · n̂|W is continuous. (9.13)

If these values are known just outside the boundary, they can be applied just inside
the boundary as boundary conditions on the ideal MHD equations. By applying
Faraday’s law in the two-dimensional plane of the boundary, we find

∂Bn

∂t

∣∣∣∣
W

= − ∇ × Etan|W . (9.14)

If ∇ × Etan|W = 0, then Bn is a constant and is determined by the initial conditions.
A common case is Bn = 0, so the field does not penetrate the wall. If ∇ × Etan|W �=
0, then Bn evolves in time according to Eq. (9.14). If the boundary is a perfectly
conducting wall, it cannot support an electric field, so n̂ × E|W = 0. From the ideal
MHD Ohm’s law E = −V × B, we have

n̂ × E = B (n̂ · V) − V (n̂ · B) , (9.15)

so that V must satisfy the condition

n̂ · V|W = n̂ · E × B
B2

∣∣∣∣
W

+ (n̂ · B) (B · V)

B2

∣∣∣∣
W

. (9.16)
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The first term on the right-hand side is just the Poynting flux arising from an exter-
nally applied electric field. The second term introduces complications when Bn �= 0,
for it allows coupling between the tangential and normal components of the veloc-
ity. (It is usually ignored, but this can lead to complications because the boundary
conditions are then not compatible with Ohm’s law.) We have seen that the density
and the total energy satisfy conservation equations, so it is necessary to specify their
fluxes at the wall. When n̂ · V|W = 0 both of these fluxes vanish. When n̂ · V|W �= 0
(as, for example, when there is an electric field at the wall), then, again, the situation
is more complicated.

We summarize the ideal MHD boundary conditions for the commonly seen case
of a perfectly conducting wall with no normal magnetic field:

B · n̂|W = 0, (9.17)

n̂ × E|W = 0, (9.18)

and

n̂ · V|W = 0. (9.19)

These are sufficient to determine the solution of the ideal MHD equations.
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Lecture 10
Resistivity and Viscosity

Resistance is futile.
The Borg, Star Trek: The Next Generation

In this lecture, we briefly discuss the effect of resistivity and viscosity on the dynam-
ics of a magnetized fluid.

We just proved that the change in magnetic flux passing through a co-moving
closed circuit is

dΨ

dt
= −

∮

C

(E + V × B) · dl. (10.1)

Since in ideal MHD E + V × B = 0, we have dΨ/dt = 0, and we say that the flux
is “frozen in” the fluid.

However, in the more general MHD case when the fluid is no longer a perfect
electrical conductor, E + V × B = ηJ and

dΨ

dt
= −

∮

C

ηJ · dl �= 0, (10.2)

so that the frozen flux condition no longer applies. This is called resistive MHD. In
this case, the fluid can “move” separately from the field and the field lines can “slip
across” the fluid. We will eventually see that this can be an important effect, even
when the resistivity is very small.

In resistive MHD, the combination of Faraday’s law and Ohm’s law becomes

∂B
∂t

= ∇ × (V × B)︸ ︷︷ ︸
Ideal MHD

−∇ ×
(

η

μ0
∇ × B

)

︸ ︷︷ ︸
Resistive modification

. (10.3)

The first term is just ideal MHD. The second term is a modification introduced
when the electrical conductivity σ = 1/η is finite (rather than infinite). When η =
constant, the last term can be written as

Schnack, D.D.: Resistivity and Viscosity. Lect. Notes Phys. 780, 55–64 (2009)
DOI 10.1007/978-3-642-00688-3 10 c© Springer-Verlag Berlin Heidelberg 2009
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∇ ×
(

η

μ0
∇ × B

)
= η

μ0
∇ × ∇ × B

= η

μ0

[∇ (∇ · B) − ∇2B
]

= − η

μ0
∇2B,

so that Eq. (10.3) becomes

∂B
∂t

= ∇ × (V × B) + η

μ0
∇2B. (10.4)

The effect of resistivity is to introduce diffusion of the magnetic field, with a diffu-
sion coefficient Dη = η/μ0 (m2/s). The characteristic time scale for the diffusion of
structures with length scale L is

τR = L2 Dη = μ0 L2/η. (10.5)

This is called the resistive diffusion time.
We will soon see that the characteristic time scale associated with ideal (η = 0)

MHD processes is the Alfvén time

τA = L

VA
, (10.6)

where V 2
A = B2/μ0ρ is the square of the Alfvén velocity. The ratio of the resistive

and ideal MHD time scales is called the Lundquist number

S = τR

τA
= μ0

LVA

η
. (10.7)

It turns out that for many (but not all) MHD situations, S >> 1. The Lundquist
number plays an important role in describing the dynamics of hot magnetized plas-
mas. We will return to the Lundquist number and its importance when we discuss
magnetic reconnection later in this course.

We now inquire as to the overall effect of electrical resistivity on plasma con-
finement. We will discuss confinement in more detail when we discuss MHD equi-
librium states. For now, we assume that we can attain a state of quasi-force balance
in which the plasma is contained (or confined) within a magnetic field, with more
plasma on the “inside” and more field on the “outside,” as sketched in Fig. 10.1

By quasi-force balance, we mean that the time on which the system evolves is
more longer than the time required for wave propagation across the system (all con-
cepts to be defined later), so that inertia (ρdV/dt) can be neglected in the equation
of motion. This approach is difficult (but possible) to justify theoretically, but it is
useful and we will adopt it here without justification.
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Fig. 10.1 Sketch of a plasma
confined by a magnetic field

With this ansatz, the configuration evolves according to the continuity equation

∂n

∂t
= −∇ · nV = −∇ · nV⊥, (10.8)

where n is defined by ρ = Mn (M is the ion mass); the equation of motion neglect-
ing inertia,

∇ p = J × B; (10.9)

and the steady-state Ohm’s law

E = −V × B + ηJ = ∇φ, (10.10)

where φ is the scalar potential. Here E can be thought of as an applied electric field.
(The last equality assures that ∇ × E = 0, as is required for steady state.) Taking
B× Eq. (10.10) and using Eq. (10.9), we find the perpendicular velocity to be

V⊥ = E × B
B2

− η

B2
∇ p. (10.11)

Substituting this into Eq. (10.8), we have

∂n

∂t
= ∇ ·

( nη

B2
∇ p
)

− ∇ ·
(

n
∇φ × B

B2

)
. (10.12)

The primary effects are illustrated for the isothermal case p = nT , with T =
constant. Then the density evolves according to

∂n

∂t
= ∇ · (Dn∇n) − ∇ · (nVE) , (10.13)

where Dn = ηnT/B2 is a diffusion coefficient and VE = ∇φ × B/B2 is the MHD
velocity resulting from the applied electric field. The first term represents diffusion
across the confining field lines and the second is a generally inward convection. The
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characteristic time for diffusion of the plasma across the size of the system is τn =
B2L2/ηnT ; we might expect the plasma to be substantially lost from the system on
this time scale in the absence of an applied electric field. Therefore, resistivity has a
negative effect on plasma confinement.

The concepts illustrated above form the basis of what are called “11/2-dimensional
transport models.” When this calculation is done in a torus with all the geometric
complexity that ensues, it is called Pfirsch–Schlüter transport.

We now turn to viscosity. In hydrodynamics, a primary effect of viscosity is to
introduce internal momentum transport between parts of the fluid that are in relative
motion. This was discussed in Lecture 7. Because of this friction, the part of a fluid
in contact with a solid wall must assume the velocity of the wall. This introduces the
requirement V‖ = VW‖, where “‖” represents the directions parallel to the wall. (If
the wall is not moving, the condition on the fluid velocity is V‖ = 0. This is some-
times called the no-slip boundary condition.) This additional boundary condition is
allowed mathematically because the viscous equations are one order higher in the
derivatives of the velocity than the inviscid equations. Differences between the flow
far from the wall and the flow at the wall are taken up in a transition region called a
boundary layer.

A similar situation occurs in a magnetized fluid, and the resistivity plays a role
in determining the thickness of the boundary layer. We consider the case of one-
dimensional, incompressible, steady flow between two parallel plates located at x =
±L . The plates are prefect electrical conductors. The flow between the plates is V =
Vz(x)êz , which is maintained by a constant imposed pressure gradient dp/dz = p′

0.
There is an externally produced magnetic field in the x-direction, perpendicular
to both the flow and the plates, which penetrates through the plates with normal
component Bn . We allow for an induced z-component of the field, so that B =
Bx (x)êx + Bz(x)êx . The fluid is assumed to have a constant and uniform viscosity
and resistivity. The geometry is sketched in Fig. 10.2. Then from ∇ ·V = 0 we have
ρ = constant, and the governing steady-state equations are

− 1

ρ
∇ p + 1

ρ
J × B + ν∇2V = 0 (10.14)

and

∇ × (V × B) + η

μ0
∇2B = 0, (10.15)

where ν = μ/ρ is the kinematic viscosity (see Lecture 7). For the flow, the no-
slip boundary condition is Vz(±L) = 0. For the field, we are allowed to specify
the normal component of B and the tangential component of E at the boundary
(see Lecture 9). The first is Bx (±L) = Bn . Tangential electric field vanishes at
a conducting boundary. From Ohm’s law, E = −V × B + ηJ, and the velocity
boundary condition, we find Etan = ηJtan = 0. The remaining boundary condition
is therefore d Bz/dx = 0 at x = ±L .
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Fig. 10.2 Flow in a channel
formed by two parallel planes
with a magnetic field
perpendicular to the channel

For comparison, we first look at the hydrodynamic case. This occurs when either
B = 0 or η → ∞; in the latter case, the fluid cannot conduct electric current and the
field satisfies ∇2B = 0 (a vacuum field). Then the z-component of Eq. (10.14) is

ν
d2Vz0

dx2
= − p′

0

ρ
. (10.16)

The subscript “0” denotes that it is the hydrodynamic flow. Recall that p′
0 is a con-

stant. The solution of Eq. (10.16) that satisfies the condition Vz0(±L) = 0 is

Vz0(x) = − p′
0 L2

2νρ

(
1 − x2

L2

)
. (10.17)

Note that the flow profile contains only a single-length scale, the channel half-width
L . It is a parabola with its maximum at x = 0; a positive flow requires a negative
pressure gradient. The mean flow is defined as

〈Vz〉 = 1

2L

L∫

−L

Vz(x)dx . (10.18)

In this case we have

〈Vz〉0 = −1

3

L2

νρ
p′

0. (10.19)

This is called the Poisieulle formula. It is an important quantity for flow through
channels and pipes. The quantity ρ 〈Vz〉0 is the average mass flux (mass per unit
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area per unit time) through the channel in response to an applied pressure gradient.
The quantity 2Lρ 〈Vz〉 is called the discharge rate (mass per unit time).

We now return to the MHD case. From ∇ · B = 0, we have Bx = constant = Bn .
In steady state, the x-component of Eq. (10.14) is

d

dx

(
p + B2

z

2μ0

)
= 0, (10.20)

so that p + B2
z /2μ0 = constant determines the transverse (to the flow) pressure pro-

file. (The streamwise profile, p′
0, is a constant.) The z-components of Eqs. (10.14)

and (10.15) are

Bn

μ0ρ

d Bz

dx
+ ν

d2Vz

dx2
= p′

0

ρ
(10.21)

and

Bn
dVz

dx
+ η

μ0

d2 Bz

dx2
= 0. (10.22)

Differentiating Eq. (10.21) with respect to x and using Eq. (10.22), we have

d3Vz

dx3
− H 2

L2

dVz

dx
= 0. (10.23)

The non-dimensional parameter

H = VAn L/
√

νDη, (10.24)

where VAn = Bn/μ0ρ (the Alfvén speed based on the imposed magnetic field) and
Dη = η/μ0 (the magnetic diffusivity) is called the Hartmann number; and the flow
we are considering is called Hartmann flow. It is the MHD analog of Poissieulle
flow in hydrodynamics.1

The solution of Eq. (10.23) is of the form Vz = Aekx + Be−kx + C . Substituting
this ansatz into Eq. (10.23), we find that k = H/L . We therefore anticipate that the
solutions will exhibit variation on a characteristic length scale δ = 1/k = L/H ,
which can be small if the Hartmann number is large. Applying the boundary condi-
tions Vz(±L) = 0, we find

Vz(x) = C

(
1 − cosh kx

cosh kL

)
= C

(
1 − cosh H x/L

cosh H

)
. (10.25)

1 See L. D. Landau and E. M. Lifshitz, Fluid Mechanics, pp. 55ff, Pergamon Press, London (1959).
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The remaining integration constant C is determined by substituting Eq. (10.25)
into Eq. (10.21) and requiring d Bz/dx = 0 at x = ±L . The result is C =
−p′

0/ρνk2. Then integrating, we find Bz to be

Bz(x) = p′
0 L

VAn
Bn

(
x

L
− sinh H x/L

H cosh H

)
, (10.26)

and from Eq. (10.25),

Vz(x) = − p′
0L2

νρH2

(
1 − cosh H x/L

cosh H

)
. (10.27)

The flow stretches the field lines in the z-direction. This results in a y-directed
current density μ0 Jy = −d Bz/dx , where

Jy(x) = − p′
0

Bn

(
1 − cosh H x/L

cosh H

)
, (10.28)

which has the same profile as the flow. A Lorentz force arises whose z-component,
−Bn Jy , opposes the flow. The equation for a field line, Δz(x) = z(x) − z(−L), is
found from integrating the characteristic equation dz/dx = Bx/Bn from −L to x .
Using Eq. (10.26), the result is

Δz(x) = p′
0L

VAn

[
1

2L

(
x2 − L2

)− L

H2 cosh H

(
cosh

H x

L
− cosh H

)]
. (10.29)

The trajectory of a field line for the case H = 10, L = 1, and p′
0L/VAn = 1 is

shown in Fig. 10.3.

Fig. 10.3 Trajectory of a
magnetic field line in
Hartmann flow
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From Eqs. (10.18) and (10.27), the mean flow in the MHD case is

〈Vz〉 = − p′
0L2

νρH2

(
1 − sinh H

H cosh H

)
. (10.30)

In the hydrodynamic limit H → 0 (either Bn → 0 or Dη → ∞), we recover
Eq. (10.19). The ratio of the MHD mean flow to the hydrodynamic Poissieulle for-
mula, Eq. (10.19), is

〈Vz〉
〈Vz〉0

= 3

H2

(
1 − sinh H

H cosh H

)
. (10.31)

For H << 1, 〈Vz〉 / 〈Vz〉0 → 1, and for H >> 1, 〈Vz〉 / 〈Vz〉0 → 1/H 2, so that
the effect of the magnetic field is to retard the flow. In Fig. 10.4, we plot the ratio
〈Vz〉 / 〈Vz〉0 for a range of Hartmann numbers. This effect can be significant at large
Hartmann number (strong field and/or good conductivity). A magnetic field can be
used as a non-mechanical valve to throttle the flow of a conducting fluid (such as,
perhaps, molten steel) through a channel.

Fig. 10.4 Ratio of the MHD
mean flow to the
hydrodynamic mean flow as a
function of Hartmann number

Comparing Eqs. (10.19) and (10.30), we see that the equivalent Poissieulle for-
mula for MHD can be written as

〈Vz〉 = −1

3

L2

νeff
p′

0, (10.32)

which is of the same form as Eq. (10.19), but with an effective viscosity of

νe f f = νH 2

3 [1 − sinh H/(H cosh H )]
. (10.33)
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The effect of the magnetic field is to increase the effective viscosity of the fluid
flowing in the channel. A plot of νe f f /ν as a function of the Hartmann number is
shown in Fig. 10.5.

Fig. 10.5 Ratio of the
effective viscosity to the
collisional viscosity as a
function of Hartmann number

Not only is the discharge rate reduced in the MHD case, but the flow profile
itself is flatter. Comparing the slopes of Eqs. (10.17) and (10.27) near the mid-plane
x = 0, we have

|dVz/dx |
|dVz0/dx | ≈ 1

cosh H

(
H

L
+ H 2 |x |

6

)
< 1. (10.34)

Plots of the hydrodynamic flow profile and MHD flow profiles for several values of
the Hartmann number are shown in Fig. 10.6.

Fig. 10.6 Hydrodynamic
flow profile and MHD flow
profiles for several values of
the Hartmann number. The
flows are normalized to
−p′

0 L2/2νρ
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While the hydrodynamic flow profile is a broad parabola, from Fig. 10.6 we see
that, for large H , most of the variation in the MHD flow occurs in a thin region near
the plates. From Eq. (10.27), the slope of the MHD profile is

dVz

dx
= p′

0L

ρH

sinh H x/L

cosh H
. (10.35)

Consider the flow near the left plate, at x = −L . Defining the distance from the
boundary as ξ = x + L , then for the case H >> 1, (sinh H x/L)/ cosh H ∼
− exp(−Hξ/L) and Eq. (10.35) becomes

dVz

dx
∼ − p′

0L

ρH
e−Hξ/L , (10.36)

so that most of the variation in the flow profile occurs in a distance δ = L/H ,
which is much less than L when H >> 1; see the remark preceding Eq. (10.25). (A
similar calculation can be done near the right plate at x = L .) This layer is called the
Hartmann layer. It is analogous to the viscous boundary layer of hydrodynamics.
Its width is proportional to

√
νDη. It gets narrower as either the viscosity or the

resistivity is decreased.
Finally, we note from Eq. (10.28) that Hartmann flow generates a net electrical

current in the y-direction given by

I =
L∫

−L

Jy(x)dx = −2Lp′
0

Bn

(
1 − tanh H

H

)
. (10.37)

For H >> 1 we have I ∼ −2Lp′
0/Bn , while for H << 1, I ∼ −2Lp′

0 H 2/3Bn .
A plot of the normalized current versus Hartmann number is shown in Fig. 10.7.
Therefore, a device based on the flow of a conducting fluid across a magnetic field
can be used as a non-mechanical current generator. The total current maximizes
above about H = 10.

Fig. 10.7 Normalized net
current generated by
Hartnann flow as a function
of the Hartmann number. The
current is normalized to
−2p′

0 L/Bn
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Lecture 11
Similarity Scaling

The universe may have a purpose, but nothing we know
suggests that, if so, it has any similarity to ours.

Bertrand Russell

In Lecture 10, we introduced a non-dimensional parameter called the Lundquist
number, denoted by S. This is just one of many non-dimensional parameters that
can appear in the formulations of both hydrodynamics and MHD. These gener-
ally express the ratio of the time scale associated with some dissipative process
to the time scale associated with either wave propagation or transport by flow.
These are important because they define regions in parameter space that separate
flows with different physical characteristics. All flows that have the same non-
dimensional parameters behave in the same way. This property is called similarity
scaling.

First consider viscous hydrodynamics. The equation of motion is

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇ p + ρν∇2V. (11.1)

Here ν = μ/ρ is called the kinematic viscosity. We now introduce dimensionless
variables, signified by a tilde (∼). For example, we choose to measure density in
units of ρ0 (kg/m3), i.e., ρ̃ = 3 means ρ = 3ρ0 (kg/m3). We measure lengths in
units of L , velocity in units of V0, pressure in units of p0, and time in units of t0.
Introducing this ansatz into Eq. (11.1), we have

ρ̃
∂Ṽ
∂ t̃

+ t0V0

L
ρ̃Ṽ · ∇̃Ṽ = − t0

V0ρ0

p0

L
∇̃ p̃ + t0ν

L2
ρ̃∇̃2Ṽ, (11.2)

where ∇̃ = L∇. We can choose our normalization values so that t0V0/L = 1; this
sets the characteristic time scale as t0 = L/V0. Then the coefficient of the first
term on the right-hand side becomes p0/ρ0V 2

0 , which will be unity if we chose to
measure the pressure in terms of p0 = ρ0V 2

0 (i.e., twice the characteristic kinetic
energy). The coefficient of the last term is then μ/V0 L . It is customary to define the
Reynolds’ number as

Re = LV0

ν
. (11.3)

Schnack, D.D.: Similarity Scaling. Lect. Notes Phys. 780, 65–69 (2009)
DOI 10.1007/978-3-642-00688-3 11 c© Springer-Verlag Berlin Heidelberg 2009
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so that Eq. (11.2) becomes

∂V
∂t

+ V · ∇V = − 1

ρ
∇ p + 1

Re
∇2V, (11.4)

where we have now dropped the tilde notation and all variables are to be considered
dimensionless. In this form, it is clear that the solution of Eq. (11.4) depends only on
the Reynolds’ number. That means that all flows with the same Reynolds’ number
look the same when scaled to their characteristic variables. This is called similarity
scaling. The only thing that matters is the ratio LV0/μ. Consider a system with
characteristic dimension L , flow speed V0, and kinematic viscosity μ (for example,
air with speed V0 blowing over a ship of length L floating in water), and compare
it to another system with the same V0 (wind speed) and viscosity (air and water),
but with length l << L . The systems will not look the same, even qualitatively.
This is because the Reynolds’ number in the first case is Re = LV0/ν, but the
Reynolds’ number in the second case is R′

e = lV0/ν = (l/L)Re << Re; the
Reynolds’ number is wrong. In order to make them appear the same using the same
materials (i.e., air and water), the wind velocity must increase by a factor of L/ l.
This is why many movie scenes of ships in storms do not look realistic; they
were filmed with a model ship in a bathtub, and the Reynolds’ number is too
small! On the positive side, similarity scaling is the basis for wind tunnel experi-
ments, which have been tremendously important in the development of advanced
aircraft.

The kinematic viscosity ν in Eq. (11.1) has the dimensions of a diffusion coeffi-
cient, m2/s. Indeed, if we drop the advection and pressure force, the velocity is seen
to satisfy a diffusion equation

∂V
∂t

= ν∇2V.

The characteristic time for viscous diffusion is τν = L2/ν, and the ratio of the
viscous diffusion time scale to the flow time scale t0 = L/V0 is τν/t0 = LV0/ν =
Re. The Reynolds’ number is fundamentally a ratio of the characteristic time scales
of the system.

Now consider the combination of Faraday’s law and Ohm’s law (sometimes
called the induction equation)

∂B
∂t

= ∇ × (V × B) + η

μ0
∇2B. (11.5)

Introducing non-dimensional variables and applying the same procedure as above,
we find

∂B
∂t

= ∇ × (V × B) + 1

RM
∇2B, (11.6)
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where

RM = LV0

(η/μ0)
(11.7)

is the magnetic Reynolds’ number. The resistive diffusion time associated with
Eq. (11.5) is τR = L2/(η/μ0) and so τR/t0 = LV0/(η/μ0) = RM. Again, the
magnetic Reynolds’ number is the ratio of the resistive diffusion time to the flow
time.

If we choose instead V0 = VA, the (as yet unmotivated) Alfvén velocity, then the
magnetic Reynolds’ number becomes S = τR/τA; this is the Lundquist number that
was introduced in Lecture 10.

Now consider MHD and, for simplicity of discussion, we let ρ = ρ0 = constant.
We must now retain the Lorentz force J × B in the equation of motion. Measuring
the current density in units of J0 = B0/μ0 L (from μ0J = ∇ × B) and transforming
to non-dimensional variables, as before, we find that the coefficient of the non-
dimensional Lorentz force is

J0 B0t0
ρ0V0

= B2
0

μ0ρ0

t0
LV0

= V 2
A

V 2
0

, (11.8)

This strongly suggests measuring the velocity in terms of the Alfvén speed, whose
square is V 2

A = B2
0/μ0ρ0. Then the pressure is measured in terms of twice the

magnetic energy density, p0 = ρ0V 2
A = B2

0/μ0 (which shows that the Alfvén speed
is the speed at which the kinetic energy equals the magnetic energy). The Reynolds’
number becomes Sν = τν/τA = LVA/ν, which we will call the viscous Lundquist
number (for lack of a better name). With these choices, the (constant density) non-
dimensional MHD equations (neglecting energy) become

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇ p + J × B + 1

Sν

ρ∇2V (11.9)

and

∂B
∂t

= ∇ × (V × B) + 1

S
∇2B. (11.10)

Solutions of the coupled MHD system appear the same (i.e., are similar) if both Sν

and S are the same. Situations in which either Sν or S (or both) are different will
behave differently.

There are several other non-dimensional parameters that appear in the literature,
which are combinations of Sν and S. For example, Pr = S/Sν = ν/(η/μ0) is called
the magnetic Prandtl number. It measures the relative effects of viscous and resistive
diffusion. Similarly, H = √

SSν is called the Hartmann number (see Lecture 10).
It is important in differentiating regimes in certain MHD flows and also in different
operating regimes of some present magnetic fusion experiments.
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We have implied that the Reynolds’ number (and other non-dimensional param-
eters) can differentiate regimes in which systems that satisfy the same equations
behave quite differently. This can be understood qualitatively as follows. Consider
the case of sheared flow. Its effect is to distort the fluid, as shown in Fig. 11.1.

Fig. 11.1 The effect of sheared flow is to stretch, or distort, the fluid

The effect of diffusion is to smooth, or relax, the shear, and hence the distortion,
as shown in Fig. 11.2.

Fig. 11.2 The smoothing effect of diffusion on a distorted flow

Both of these processes are at work simultaneously. The Reynolds’ number is
the ratio of the time scales associated with the smoothing and distortion processes,
Re = τν/t0. When Re >> 1 the fluid is distorted faster than it can relax, and
when Re << 1 the fluid is relaxed faster than it can be distorted. Smoothing and
distortion occur on the same time scale when Re ∼ 1, or on a length scale L0 ∼
ν/V0. Thus, flow with a very large Reynolds’ number will tend to look distorted and
disorganized, and the velocity field will look “spiky” (also called “turbulent“), while
flow with a very low Reynolds’ number will be exceedingly smooth, like molasses.
Flows with an intermediate Reynolds’ number will appear to be smooth, organized,
and “laminar.” These flow regimes are illustrated in Fig. 11.3. From left to right,

Fig. 11.3 Left: “Spiky” structure of flow at large Reynolds’ number. Center: Laminar structure of
flow at a moderate Reynolds’ number. Right: Smooth structure of flow at a low Reynolds’ number



www.manaraa.com

11 Similarity Scaling 69

these figures can be thought of either as representing the same scale length with
increasing viscosity or representing the same viscosity with decreasing scale length.

Similar remarks apply to the structure of the magnetic field as a function of either
the magnetic Reynolds’ number RM or the Lundquist number S. However, in this
case the structure in the current density is even sharper than that of the magnetic
field, since J ∼ ∂ B/∂x . The spikes in the structure of the current density are
called current sheets. These will become of central importance when we discuss
reconnection and resistive instabilities.

There are other non-dimensional parameters associated with thermal conduc-
tion, rotation, etc., all of which measure the relative importance of various physical
effects.
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Lecture 12
The Wöltjer Invariants of Ideal MHD,
Topological Invariance, Magnetic
and Cross-Helicity

The chain of destiny can only be grasped one link at a time.
Winston Churchill

We now return to ideal MHD, so that E + V × B = 0. The magnetic flux through
and closed circuit C is

Φ =
∫

S

B · n̂d S, (12.1)

where S is any surface bounded by C . Since ∇ · B = 0, we can write B = ∇ × A,
where A is the vector potential. Then the flux can also be written as

Φ =
∫

S

∇ × A · n̂d S =
∮

C

A · dl. (12.2)

Now consider the volume defined by all field lines enclosed by the curve C .
This volume V defines a flux tube. The flux Φ within V is constant because B
is everywhere tangent to its boundary. We know that, since ∇ · B = 0, the tube
thus defined either closes on itself or fills space ergodically. Any finite volume V0

contains an infinite number of such flux tubes.
Now consider the following integral:

Kl =
∫

Vl

A · BdV , (12.3)

where Vl is the volume of the lth in V . The flux tube will move about with the fluid
velocity V. As it does, Eq. (12.3) changes according to

d Kl

dt
=
∫

Vl

(
∂A
∂t

· BdV + A · ∂B
∂t

+ A · B
d

dt
dV

)
. (12.4)

Schnack, D.D.: The Wöltjer Invariants of Ideal MHD, Topological Invariance, Magnetic and
Cross-Helicity. Lect. Notes Phys. 780, 71–76 (2009)
DOI 10.1007/978-3-642-00688-3 12 c© Springer-Verlag Berlin Heidelberg 2009
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The last term is evaluated as

d

dt
dV = d

dt
dx1dx2dx3 = V1dx2dx3 + V2dx2dx3 + V3dx1dx2

= V · n̂d S. (12.5)

Then using Faraday’s law, we have

d Kl

dt
=
∫

Vl

(−E + ∇φ) · BdV +
∫

Vl

A · (−∇ × E) · BdV +
∫

Sl

(A · B) (V · n̂) d S,

(12.6)
where φ is the scalar potential. Now

∇ · (A × E) = E · ∇ × A − A · ∇ × E, (12.7)

so that the second integral can be written as

∫

Vl

A · (∇ × E) · BdV =
∫

Vl

E · BdV −
∫

Vl

∇ · (A × E) dV

=
∫

Vl

E · BdV −
∫

Sl

(A × E) · n̂d S. (12.8)

Similarly, the first integral can be rewritten as

∫

Vl

∇φ · BdV =
∫

Vl

∇ · (φB) dV

=
∫

Sl

φB · n̂d S = 0, (12.9)

because ∇ ·B = 0 and B · n̂ = 0 on Sl by definition since Vl is a flux tube. Therefore

d Kl

dt
= −2

∫

Vl

E · BdV +
∫

Sl

(A × E) · n̂d S +
∫

Sl

(A · B) (V · n̂) d S. (12.10)

Now invoking ideal MHD, E = −V × B, Eq. (12.10) becomes

d Kl

dt
= −

∫

Sl

[
(A · B) (V · n̂) − (A · V) (B · n̂)

]
d S = 0, (12.11)
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since both B · n̂ and V · n̂ vanish on Sl . Therefore Kl = constant for each and every
flux tube in the system. The Kl are called the Wöltjer invariants.1 They depend on
E = −V × B (ideal MHD) and B · n̂ = V · n̂ = 0 on Sl . Of the latter two equalities,
the first is a property of the flux tube and the second is also a consequence of ideal
MHD (the flux tube moves with the fluid).

Fig. 12.1 The topological
linking of two flux tubes.
This cannot be altered in
ideal MHD

It is possible to give a physical interpretation of the Wöltjer invariants.2 Consider
the linked flux tubes shown in Fig. 12.1. Flux tube C1 contains flux Φ1. Flux tube
C2 contains flux Φ2. The Wöltjer invariant for tube C1 is

K1 =
∫

V1

A · BdV . (12.12)

For this flux tube, we have

BdV = (B1ê1 + B2ê2 + B3ê3)dx1dx2dx3

= ê1dx1 (B1dx2dx3) + ê2dx2 (B2dx1dx3) + ê3dx3 (B3dx1dx2)

= (B · n̂d S) dl, (12.13)

so that Eq. (12.12) becomes

K1 =
∫

S1

B · n̂d S
∮

C1

A · dl. (12.14)

The first integral is just Φ1, the flux contained within tube C1. From Eq. (12.1), the
second integral is the flux enclosed, or linked, by the curve C1, which is Φ2 if the

1 L. Wöltjer, Proc. Nat. Acad. Sciences 44, 489 (1958).
2 See H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge
University Press, Cambridge, UK (1978).
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tubes have “right-hand” linkage, −Φ2 if the tubes have “left-hand” linkage, and 0 if
the tubes are not linked. For now we write

K1 = Φ1Φ2. (12.15)

Similarly,

K2 = Φ2Φ1 = K1. (12.16)

If the tubes are linked N times, we have K1 = K2 = ±NΦ2Φ1. The same results
are obtained for a single-knotted flux tube, as shown in Fig. 12.2.

Fig. 12.2 A very rough
sketch of a single-knotted
flux tube

The Wöltjer invariants are thus a direct measure of the linkage, or topology, of
the flux tubes. Since the Kl are constant in ideal MHD, it means that the topology
of the flux tubes cannot change and is preserved for all time. This property is called
topological invariance. (It is really just another way of saying that the magnetic field
is co-moving with the fluid.) It is a result of the ideal MHD Ohm’s law, E+V×B =
0, and places a very strong constraint on the allowable motions of the fluid.

Now consider a fixed volume V of fluid (no longer a flux tube). The volume
integral

KM =
∫

V

A · BdV (12.17)

is called the magnetic helicity associated with the volume V . We remark that the
integrand A · B contains the vector potential, and hence depends on the choice of
gauge. Letting A′ = A + ∇χ , we have
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K ′
M =

∫

V

A′ · BdV

=
∫

V

(A + ∇χ ) · BdV

=
∫

V

A · BdV +
∫

V

∇χ · BdV

= KM +
∫

V

∇ · (χB) dV

= KM +
∮

S

χB · n̂d S. (12.18)

Therefore, K ′
M = KM only if the surface integral vanishes. There are many practical

cases where this is true. Examples are periodic boundary conditions or perfectly
conducting boundaries. (However, if the geometry is not simply connected, as in a
torus, the flux within the fluid may link some external flux, and this must be taken
into account. We will discuss more on this when we take on MHD relaxation.)

Nonetheless, in future topics we will find it useful to have a definition of magnetic
helicity that is manifestly gauge invariant. This can be obtained by defining

KM0 =
∫

V

(A + A0) · (B − B0) dV , (12.19)

where B0 = ∇ × A0 is a reference field, to be defined. Letting A′ = A + ∇χ , it is
easy to show that

K ′
M0 = KM0 +

∮

S

χ (B · n̂ − B0 · n̂) d S. (12.20)

If we then choose the reference field such that B0 · n̂ = B · n̂ on S, KM0 will be gauge
invariant. (This holds true if we also introduce A′

0 = A0 + ∇φ.) A straightforward
calculation then shows that

d Km0

dt
= −2

∫

V

(E · B − E0 · B0) dV , (12.21)

where E0 = −∂A0/∂t . Then if E = −V × B and E0 = −V × B0, KM0 remains
constant for all time. This is called the generalized magnetic helicity. It is conserved
in ideal MHD.

Since generalized helicity is conserved, it is tempting to interpret the integrand
A·B as a helicity density. This can be misleading. From the discussion of this lecture,
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it is clear that helicity only has physical meaning as a volume integral. Attempts to
assign some physical meaning to the local quantity A · B have not led to significant
insights.

We close this lecture with the derivation of another integral invariant that explic-
itly involves both the flow velocity and the magnetic field. It is called the cross
helicity and appears in theories of MHD turbulence. It is defined as

HC =
∫

V · BdV . (12.22)

Assuming ideal MHD and no dissipation, its time derivative is

d HC

dt
=
∫ (

B · ∂V
∂t

+ V · ∂B
∂t

)
dV

=
∫ [

B ·
(

−V · ∇V − 1

ρ
∇ p + 1

ρ
J × B

)
+ V · ∇ × (V × B)

]
dV .

(12.23)

The third term in the integrand, involving the Lorentz force, vanishes identically. If
we assume the adiabatic law p ∼ ρΓ, the second term is

1

ρ
B · ∇ p = ∇ ·

(
Γ

Γ − 1

p

ρ
B
)

, (12.24)

since ∇ · B = 0. Using the vector identities V · ∇V = ∇(V 2/2) − V × ∇ × V and
V · ∇ × (V × B) = ∇ · [V × (V × B)] + (V × B) · ∇ × V, the first and fourth terms
combine to form a divergence:

− B · (V · ∇V) + V · ∇ × (V × B) = −∇ ·
[

1

2
V 2B − V × (V × B)

]
. (12.25)

Using the divergence theorem, the rate of change of HC is

d HC

dt
= −

∮

S

n̂ ·
[(

1

2
V 2 + Γ

Γ − 1

p

ρ

)
B − V × (V × B)

]
d S, (12.26)

which vanishes when n̂ · B = n̂ · V = 0 on the boundary S. Under these circum-
stances, the cross-helicity is an invariant in ideal MHD.
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Lecture 13
Reduced MHD1

Our life is frittered away by detail. Simplify, simplify.
Henry David Thoreau

One often encounters situations in which the magnetic field is strong and almost
uni-directional. Since a constant field does not produce a current density, these fields
are sometimes said to be almost potential. Examples are the magnetic fields in loops
in the solar corona and tokamaks. What current density exists arises from small
variations of the field from uniformity. This situation is sketched in Fig. 13.1.

Fig. 13.1 An “almost
potential” magnetic field

Historically, the development of the reduced MHD model was motivated by some
properties of the full MHD equations that we have not yet discussed. These involve
issues of force balance and time and space scales associated with various manifesta-
tions of plasma dynamics. It is therefore not clear when it is appropriate to introduce
reduced MHD into this course of study. I have chosen to present it here, at the end
of the development of various MHD models, rather than waiting until the details of
the important waves and instabilities have been worked out. This will require us to
look ahead a little and anticipate some of the important results. The derivation given
here will therefore be more heuristic than formal. I hope this does not lead to too
much confusion.

1 Much of this presentation follows that of Dieter Biskamp, Nonlinear Magnetohydrodynamics,
Cambridge University Press, Cambridge, UK (1993).

Schnack, D.D.: Reduced MHD. Lect. Notes Phys. 780, 77–83 (2009)
DOI 10.1007/978-3-642-00688-3 13 c© Springer-Verlag Berlin Heidelberg 2009
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When we say that the field is strong, we mean that both the kinetic and internal
energy densities are much smaller than the magnetic energy density, i.e.,

ρV 2 ∼ p � B2

2μ0
. (13.1)

Since the magnetic field is almost uniform and uni-directional, the field has one
almost uniform component (Bz , say, taken to be positive) that is much larger than
the other components. It is customary to denote these other components collectively
by the notation B⊥, meaning the components of B perpendicular to the strong, nearly
uniform component. [In this choice of coordinate system, these are the (x, y) com-
ponents.] The magnetic field is thus characterized by the condition

B⊥
Bz

∼ ε << 1. (13.2)

We will seek a simplified MHD model that describes the dynamics under these
conditions. Formally, the variables appearing in the MHD equations are ordered
as some power of the small parameter ε. This ansatz is introduced into the MHD
equations, and only the lowest powers of ε are retained. The formal procedure
also removes the fastest time scale from the problem. The resulting equations have
been found to be extremely useful for both analytic and numerical calculations. The
model is called a reduced MHD. It describes the dynamics of system in the plane
perpendicular to the mean field.

The condition given in Eq. (13.2) implies the ordering

B⊥ ∼ ε, Bz ∼ 1. (13.3)

To illustrate the formalism, we calculate the unit vector parallel to the magnetic
field as:

b̂ = B
B

= B⊥ + Bz êz(
B2

z + B2
⊥
)1/2

= εB⊥ + Bz êz

Bz

(
1 + ε2 B2

⊥
B2

z

)1/2
≈ εB⊥ + Bz êz

Bz

(
1 − 1

2
ε2 B2

⊥
B2

z

)

= êz + ε
B⊥
Bz

+ O(ε2) ≈ êz, (13.4)

to lowest order in ε.
We now assume that the dynamics of the fluid and the field in the plane perpen-

dicular to the mean field lead to approximate energy equipartition, i.e.,

ρV 2
⊥ ∼ p ∼ B2

⊥
2μ0

. (13.5)
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Since B⊥ ∼ ε, we require for consistency

V⊥ ∼ ε, p ∼ ε2. (13.6)

We will see that the most important motions in systems of this sort have little
spatial variation along the mean magnetic field. Most of their spatial structure is in
the plane perpendicular to the mean field [the (x, y) plane]. Using this hindsight, we
introduce the ordering

λ‖
λ⊥

= k⊥
k‖

∼ ε, (13.7)

which implies that

∇⊥ ∼ 1,
∂

∂z
∼ ε. (13.8)

Again with hindsight, we assume that the dynamics parallel to the mean magnetic
field occur on a much shorter time scale than the dynamics in the perpendicular
plane. (For example, sound waves will propagate rapidly along the field and smooth
out significant variations in that direction.) In this case, we expect approximate force
balance to be maintained in the parallel direction on the time scale of the perpendic-
ular dynamics, i.e.,

b̂ · ∇
(

p + B2

2μ0

)
≈ 0, (13.9)

so that dVz/dt ≈ 0 or Vz ≈ constant; we choose Vz = 0. Using Eq. (13.3), this
implies

∂p

∂z
+ 1

μ0
Bz

∂ Bz

∂z
= 0. (13.10)

Since Bz is almost uniform, we can write Bz = Bz0 + B̃z(x, y, z), where Bz0 =
constant. Then

∂p

∂z
+ 1

μ0
Bz0

∂ B̃z

∂z
= 0, (13.11)

or p ∼ (Bz0/μ0) B̃z , which, in light of Eq. (13.6), yields the ordering

B̃z ∼ ε2. (13.12)

Finally, we are interested in situations in which the resistivity is small, so we
order

η ∼ ε. (13.13)
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The reduced MHD ordering is then summarized as

Vz = 0, ∇⊥ ∼ 1,
∂

∂z
∼ ε, η ∼ ε, (13.14)

V⊥ ∼ ε, p ∼ ε2, B̃z ∼ ε2.

It is also customary to take ρ = ρ0 = constant ∼ 1.
We now proceed with the derivation. The current density is

μ0J = ∇ × B

=
(

∇⊥ + εêz
∂

∂z

)
× (εB⊥ + Bz0êz)

= ε∇⊥ × B⊥ + O(ε2),

so that

μ0 Jz ∼ ε, μ0J⊥ ∼ ε2. (13.15)

The magnetic field is written as

B = êz × ∇ψ + Bz0êz, (13.16)

and the condition ∇ · B = 0 is satisfied to the lowest order in ε, i.e.,

∇ · B = ∇ · (B⊥ + Bz0êz)

= ∇ · B⊥
= ∇ · (êz × ∇ψ)

= êz · ∇ × ∇ψ + ∇ψ · ∇ × êz

= 0.

In this representation, the current density is

μ0J = ∇ × (êz × ∇ψ) = êz∇2ψ + O(ε),

so that

μ0 Jz = ∇2ψ. (13.17)
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The flux function ψ is related to the vector potential by

B = εB⊥ + Bz0êz = ∇ × A

=
(

∇⊥ + εêz
∂

∂z

)
× (A⊥ + Az êz)

= ∇⊥ × A⊥ − êz × ∇ Az + ε
∂

∂z
(êz × A⊥)

≈ êz × ∇ (−Az)︸ ︷︷ ︸
⊥ direction

+∇⊥ × A⊥︸ ︷︷ ︸
z direction

,

so that ψ = −Az . Further, since Bz = Bz0 + ε2 B̃z , we have ∇⊥ × A⊥ ≈ 0, and we
choose A⊥ = 0.

Now look at the induction equation (Faraday’s law and Ohm’s law). Since
∂B/∂t = −∇ × E and E = −V × B + ηJ, using the choices of the previous
paragraph we have

êz
∂ Az

∂t
= V × B − ηJ − ∇χ, (13.18)

where χ is the scalar potential. The parallel and perpendicular components of
Eq. (13.18) are

− ∂ψ

∂t
= êz · V × B − ηJz − ∂χ

∂z
(13.19)

and

0 = (V × B)⊥ − ∇⊥χ. (13.20)

In Eq. (13.19), we have used the fact that ηJ⊥ ∼ ε3. Now, since Vz = 0, V × B =
V⊥ × B⊥ + Bz0V⊥ × êz , and therefore

êz · V × B = êz · V⊥ × B⊥ (13.21)

and

(V × B)⊥ = Bz0V⊥ × êz. (13.22)

Then using Eqs. (13.20) and (13.22), V⊥ × êz = ∇⊥χ , and so

V⊥ = êz × ∇φ, (13.23)
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where φ = χ/Bz0 is the stream function for the velocity. With this representation
we see that

∇⊥ · V⊥ = ∇⊥ · (êz × ∇φ) = 0, (13.24)

so that the flow is incompressible in the perpendicular plane.
Using Eqs. (13.16), (13.17), and (13.21), we find that Eq. (13.19), the parallel

component of the induction equation, becomes

∂ψ

∂t
= −V⊥ · ∇ψ + η

μ0
∇2ψ − Bz0

∂φ

∂z
. (13.25)

Equation (13.25) describes the evolution of the magnetic field. It contains the
unknown potential functions ψ and φ. It remains to find an equation for the evolu-
tion of the flow. For this type of problem (almost two-dimensional) it is convenient
to use the z-component of the curl of the equation of motion, i.e.,

êz · ρ0

[
∂

∂t
∇ × V + ∇ × (V · ∇V)

]
= êz · ∇ × (J × B) . (13.26)

We use the useful identity V ·∇V = ∇ (V 2/2
)−V×∇ ×V and define the vorticity

as ω = ∇ × V. Then

∇ × (V · ∇V) = −∇ × (V × ω)

= −ω · ∇V + V · ∇ω + ω∇ · V.

Since Vz = ∇ · V = 0, the z-component of this expression is V · ∇ω, where ω =
êz · ∇ × V is the z-component of the vorticity or, in light of Eq. (13.23), ω = ∇2

⊥φ.
Then Eq. (13.26) can be written as

ρ0

(
∂ω

∂t
+ V · ∇ω

)
= êz · ∇ × (J × B) . (13.27)

The right-hand side simplifies according to

∇ × (J × B) = B · ∇ (Jz êz) ,

since ∇ · B = ∇ · J = 0, and Jz∂ Bz/∂z ≈ 0 to the lowest order in ε. The resulting
equation is

ρ0

(
∂ω

∂t
+ V · ∇ω

)
= B · ∇ (Jz) . (13.28)
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The reduced MHD model therefore consists of Eqs. (13.25) and (13.28):

∂ψ

∂t
= −V⊥ · ∇ψ + η

μ0
∇2ψ − Bz0

∂φ

∂z
(13.29)

and

ρ0

(
∂ω

∂t
+ V · ∇ω

)
= B · ∇ (Jz) . (13.30)

These equations are closed by the subsidiary relations

ω = ∇2
⊥φ, (13.31)

μ0 Jz = ∇2ψ, (13.32)

and

V⊥ = êz × ∇φ. (13.33)

We note the following:

1. Reduced MHD consists of six equations in the six unknowns ψ , ω, φ, Jz , and V⊥.
2. We need to only deal with scalar functions.
3. There are no parallel dynamics; these fast time scales have been ordered out of

the problem.
4. Two of the Eqs. (13.31) and (13.32) are of the Poisson type.
5. The pressure does not enter the equations; it has been ignored since β =

2μ0 p/B2
z ∼ ε2. However, the model can be extended to include the ordering

β ∼ ε (called the “finite-β” equations).
6. Reduced MHD forms the basis of much of modern tokamak theory.
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Lecture 14
Equilibrium: General Considerations—The
Virial Theorem

Be still my beating heart.
Sting

In MHD we are often interested in situations of equilibrium, or force balance. This
is because, in magnetic fusion we seek to confine a hot plasma for a very long time.
Clearly, a state of equilibrium is a minimum condition for this type of fusion to
occur.

We distinguish between the cases stationary and non-stationary equilibrium. In
stationary equilibrium, the flow velocity vanishes and the condition for force balance
is dV/dt = ∂V/∂t = F/ρ = 0. In non-stationary equilibrium there is a finite flow
velocity, so the condition is ∂V/∂t = 0 = F/ρ − V · ∇V. From now on, when we
talk about equilibrium we mean stationary equilibrium (unless otherwise noted).

In hydrodynamics, stationary equilibrium is relatively simple. Consider the case
of a fluid in a gravitational field. The condition for stationary equilibrium is −∇ p +
ρg = 0. In one spatial dimension, with g = −gêx ,

dp

dx
= −ρg (14.1)

or

p(x) = p0 − g

x∫

x0

ρ(x ′)dx ′. (14.2)

We can find the pressure if the density profile is specified or if there is a relationship
p = p(ρ). In the latter case dp/dx = C2

s dρ/dx , where C2
s ≡ dp/dρ is the square

of the sound speed. If p and ρ are related linearly, then C2
s = constant, and the

solution is

ρ(x) = ρ0e−gx/C2
s . (14.3)

For the case of a non-stationary equilibrium in hydrodynamics, we have
ρV · ∇V = −∇ p, so that finite flow can lead to non-uniform pressure. In one
dimension, this is just

Schnack, D.D.: Equilibrium: General Considerations—The Virial Theorem. Lect. Notes
Phys. 780, 85–89 (2009)
DOI 10.1007/978-3-642-00688-3 14 c© Springer-Verlag Berlin Heidelberg 2009
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d

dx

(
p + 1

2
ρV 2

x

)
= 0 (14.4)

or p + ρV 2
x /2 = constant. This is a special case of Bernoulli’s theorem.

In ideal MHD, the pressure gradient can be balanced by the Lorentz force. This is
the basis for “magnetic confinement.” This situation is of great importance and must
be studied in more detail. The condition for stationary equilibrium in ideal MHD is

∇ p = J × B. (14.5)

We note immediately that B · ∇ p = 0 and J · ∇ p = 0, so that the pressure gradient
must be perpendicular to both the magnetic field B and the current density J. The
first condition means that the pressure must be constant along the direction of the
magnetic field. This means that magnetic field lines lie everywhere within regions
of constant pressure and implies the possibility that these regions could be two-
dimensional surfaces. The second condition means that the existence of a current
that is not parallel to the magnetic field requires a pressure gradient and vice versa.

We will immediately be more general.1 In MHD, the momentum evolves accord-
ing to

∂

∂t
ρV = −∇ · T, (14.6)

so that the condition for equilibrium can be expressed as

∇ · T = 0 (14.7)

or

∂Tki

∂xk
= 0, (14.8)

where, with V = 0,

Tik = Tki =
(

p + B2

2μ0

)
δik − 1

μ0
Bi Bk (14.9)

is the total stress tensor. It is convenient to rewrite Tik as

Tik =
(

p + B2

2μ0

)
δik − B2

μ0

Bi Bk

B2
. (14.10)

1 The discussion of the Virial Theorem follows that of V. D. Shafranov, “Plasma Equilibrium in
a Magnetic Field”, in Reviews of Plasma Physics, M. A. Leontovich (ed.), Consultants Bureau,
New York (1965).
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Then we can define the effective perpendicular and parallel pressures as

p⊥ = p + B2

2μ0
(14.11)

and

p‖ = p − B2

2μ0
, (14.12)

so that p‖ − p⊥ = −B2/μ0. The stress tensor can then be written as

Tik = p⊥δik + (p‖ − p⊥
) Bi Bk

B2
. (14.13)

Therefore, in MHD the stress tensor acts as though the pressure were anisotropic.
For the special case B = Bêz , the components of the stress tensor are

Txx = p⊥ Txy = 0 Txz = 0
Tyx = 0 Tyy = p⊥ Tyz = 0
Tzx = 0 Tzy = 0 Tzz = p‖

Since p⊥ > p‖, the fluid feels a greater pressure perpendicular to the magnetic field
than it does parallel to the field. This behaviur is completely different from our usual
experience with an unmagnetized fluid.

We now consider the expression

∂

∂xk
(xi Tik) = Tik

∂xi

∂xk
+ xi

∂Tik

∂xk

= Tikδik

= Tii , (14.14)

where we have used the equilibrium condition, Eq. (14.8). (Note that Tii is the trace
of the tensor T, i.e., the sum of the diagonal elements.)

Now introduce an isolated fluid permeated by a magnetic field. In equilibrium,
Eq. (14.14) must hold. Integrating over a volume and applying Gauss’ theorem, we
have

∫

V

Tii dV =
∮

S

xi Tikd Sk, (14.15)

where V is the volume of integration and S is the surface area of that volume (not
necessarily the same as the volume and surface of the fluid). Evaluating the terms in
Eq. (14.15), we find

∫

V

3

(
p + B2

2μ0

)
dV =

∮

S

x ·
[(

p + B2

2μ0

)
I − BB

μ0

]
· dS. (14.16)
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The left-hand side of this equation is positive definite. We now seek to estimate the
sign and magnitude the right-hand side.

We consider the case where all the current density J and the pressure p are com-
pletely within the fluid, and the surface S is completely outside the fluid. The mag-
netic field arises from currents within the plasma only. This is shown in Fig. 14.1.
We now take S → ∞, so that only terms involving B contribute to the right-hand
side of Eq. (14.16). The vector potential due to currents within the fluid is

A(r) = μ0

4π

∫

V

J(r′)
|r − r′|dV ′. (14.17)

If r is far from the source r′, we can expand 1/
∣∣r − r′∣∣ as

1

|r − r′| = 1

|r| + r · r′

|r − r′|3 + · · · · · · (14.18)

Inserting this expansion into Eq. (14.17), and using the fact that, since ∇ · J = 0,

∫

V

J(r′)dV ′ = 0, (14.19)

we find that A ∼ 1/r2, B ∼ 1/r3 (since B = ∇ × A), and B2 ∼ 1/r 6. The other
term is x · dS, which scales like r3, so the right-hand side of Eq. (14.16) scales like
1/r 3, which vanishes as r → ∞.

Fig. 14.1 An electrically
conducting fluid permeated
by a magnetic field. The
surface of integration lies
completely outside the fluid

Then, as S → ∞, the left-hand side of Eq. (14.16) remains positive, while
the right-hand side goes to zero. This contradiction means that, under the stated
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conditions, Eq. (14.8) cannot be satisfied and equilibrium is impossible! This impor-
tant and general result is called the Virial Theorem. It says that a magnetized fluid
cannot be in MHD equilibrium under forces generated by its own internal currents.
It implies that any MHD equilibrium must be supported by external currents.

Of course, the Virial Theorem is satisfied in all laboratory experiments that
contain external coils to produce magnetic fields. It may not be satisfied under
astrophysical conditions. However, we already know that the universe is a dynamic
place!
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Lecture 15
Simple MHD Equilibria

The path of precept is long, that of example is short and
effectual.

Seneca

In this lecture we will examine some simple examples of MHD equilibrium con-
figurations. These will all be in cylindrical geometry. They form the basis for more
complicated equilibrium states in toroidal geometry.

Many MHD equilibrium configurations (including tokamaks, spheromaks, and
RFPs) are based on the pinch effect, which results from the attractive nature of
parallel currents (exceptions are mirrors and stellarators). Consider two elements
carrying currents J1 and J2 in the z-direction, as shown in Fig. 15.1.

Fig. 15.1 Illustration of the
attractive nature of the
Lorentz force between two
elements carrying parallel
currents

The magnetic field B1 produced by J1 encircles element 1 according to the right-
hand rule, and similarly for B2 and J2. The Lorentz force J1 ×B2 acting in element 1
is directed toward element 2. Similarly, the Lorentz force J2 × B1 acting on element
2 is directed toward element 1.

If the current J is distributed continuously in space, the net effect of the Lorentz
force will be to pull the fluid together, compressing it and thereby increasing the
pressure. This process will cease when the increase in the pressure force tending
to expand the fluid just balances the Lorentz force tending to compress the fluid or
∇ p = J × B. If the current flows in a column, the column will tend to contract
or pinch in a direction perpendicular to its axis until the equilibrium condition is
reached. This is called the pinch effect, which is shown in Fig. 15.2.

Schnack, D.D.: Simple MHD Equilibria. Lect. Notes Phys. 780, 91–98 (2009)
DOI 10.1007/978-3-642-00688-3 15 c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 15.2 Illustration of the
pinch effect, which tends to
make the current channel
contract

Equilibrium configurations based on the pinch effect are named after the direction
of the current, not the magnetic field. We will now examine several of these in
cylindrical geometry.

In the theta-pinch (or θ -pinch), the current flows only in the azimuthal, or θ ,
direction. This produces a magnetic field in the z-direction, as shown in the Fig. 15.3.

Fig. 15.3 A theta-pinch
equilibrium

The magnetic field is a combination of a uniform, externally generated field and the
field produced by the current. We take Bz to be in the positive z-direction and Jθ to
be in the negative θ -direction. We assume that all quantities are functions of r only.
The Lorentz force is then radially inward, i.e.,

J × B = −Jθ êθ × Bz êz = −Jθ Bz êr . (15.1)

We will generally use three equations to analyze an equilibrium configuration.1

These are the following:

1. ∇ · B = 0.
2. Ampére’s law, μ0J = ∇ × B.
3. Force balance, ∇ p = J × B.

1 This discussion follows that of Jeffrey P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press,
New York (1987).
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These are now considered for the case of the theta-pinch as follows:

1. ∇ · B = 0. In cylindrical geometry, this is

1

r

∂

∂r
(r Br ) + 1

r

∂ Bθ

∂θ
+ ∂ Bz

∂z
= 0. (15.2)

Since the configuration depends only on r , and Br = 0, we require

∂ Bz

∂z
= 0, (15.3)

which is satisfied automatically.
2. Ampére’s law, μ0J = ∇ × B. Under these conditions, this becomes

μ0 Jθ = −d Bz

dr
. (15.4)

3. Force balance, ∇ p = J × B. This becomes

dp

dr
= Jθ Bz . (15.5)

Substituting Eq. (15.4) into Eq. (15.5), we have

dp

dr
= Bz

(
− 1

μ0

d Bz

dr

)
= − d

dr

(
B2

z

2μ0

)

or

d

dr

(
p + B2

z

2μ0

)
= 0. (15.6)

The second term in parentheses is the magnetic pressure. This equation can be
integrated to yield

p + B2
z

2μ0
= B2

0

2μ0
, (15.7)

so that Bz = B0 when p = 0, i.e., outside the fluid. The constant B0 is thus the
externally generated component of the axial magnetic field. Note that Eq. (15.7) is
a single equation containing two unknowns, Bz and p. We are free to specify one
and then determine the other. This will be a general property of MHD equilibria. An
example of a solution of Eq. (15.7) is

p(r ) = p0e−r2/a2
(15.8)



www.manaraa.com

94 Lectures in Magnetohydrodynamics

and

Bz(r ) = B0

(
1 − β0e−r2/a2

)1/2
, (15.9)

where β0 = 2μ0 p0/B2
0 and r = a is the radius of the outer boundary. These

solutions are sketched (very roughly!) in Fig. 15.4.

Fig. 15.4 Rough sketch of
pressure and magnetic field
profiles in a theta-pinch

We now consider the linear z-pinch. The current now flows in the z-direction and
the magnetic field is in the θ -direction, as shown in Fig. 15.5.

Fig. 15.5 A z-pinch
equilibrium

We again assume that there is only r -dependence and proceed as with the
θ -pinch.

1. ∇ · B = 0.

1

r

∂

∂r
(r Br ) + 1

r

∂ Bθ

∂θ
+ ∂ Bz

∂z
= 0. (15.10)

We have Br = Bz = 0, so we require

∂ Bθ

∂θ
= 0, (15.11)

which is automatically satisfied if Bθ = Bθ (r ).
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2. Ampére’s law, μ0J = ∇ × B.

μ0 Jz = 1

r

d

dr
(r Bθ ) . (15.12)

3. Force balance, ∇ p = J × B.

dp

dr
= −Jz Bθ . (15.13)

Using Eq. (15.12),

dp

dr
= − Bθ

μ0r

d

dr
(r Bθ )

= − Bθ

μ0

d Bθ

dr
− B2

θ

μ0r

or

d

dr

(
p + B2

θ

2μ0

)
= − B2

θ

μ0r
. (15.14)

This looks like the result for the θ -pinch, Eq. (15.16), with the addition of a
term on the right-hand side. This term is called the hoop stress and arises from the
curvature of the magnetic field lines. (In the θ -pinch, the field lines are straight.)

Consider the curve shown in Fig. 15.6.

Fig. 15.6 Illustration of the
change in the tangent vector
along a magnetic field line

Let s be the distance along the curve and define t as a unit vector tangent to the
curve. The curvature vector is then defined as
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κ = dt
ds

, (15.15)

the rate of change of the tangent vector as we move along the curve. The radius of
curvature at a point s is defined as

Rc = 1

|κ| . (15.16)

If the curve is a magnetic field line, the unit tangent vector is b̂ = B/B, and d/ds =
b̂ · ∇, so the curvature of a magnetic field line is

κ = b̂ · ∇b̂. (15.17)

A straightforward calculation yields

b̂ × (∇ × b̂
) = −b̂ · ∇b̂ = −κ. (15.18)

Then another straightforward calculation using Ampére’s law and force balance
leads to

κ = −b̂ × (∇ × b̂
)

= μ0

B2
∇ p + 1

B
∇⊥ B

= μ0

B2
∇
(

p + B2

2μ0

)

or

∇
(

p + B2

2μ0

)
= B2

μ0
κ. (15.19)

If κ = 0, as in the θ -pinch, we obtain Eq. (15.6). For the case of the z-pinch, we
have

κ = b̂ · ∇b̂ = –Bθ êθ

–Bθ

· ∇
(

–Bθ êθ

–Bθ

)

= êθ · ∇ êθ = êθ ·
(

êθ

r

∂ êθ

∂r

)

= 1

r

∂ êθ

∂r
= − êr

r
. (15.20)
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Then Eq. (15.19) becomes

∇
(

p + B2

2μ0

)
= − B2

μ0r
êr

or, for our one-dimensional configuration,

d

dr

(
p + B2

θ

2μ0

)
= − B2

θ

μ0r
, (15.21)

which agrees with Eq. (15.14). The hoop stress, or tension force, balances the
gradient of the total pressure. Again, this is one equation in two unknowns. One
of the unknowns can be specified arbitrarily.

The case that contains both Bθ (r ) and Bz(r ) (and, consequently, both Jθ and Jz)
is called the general screw pinch, because the field lines wrap around the cylinder
in a helical fashion, like the threads on a screw. For this configuration:

1. ∇ · B = 0.

1

r

∂ Bθ

∂θ
+ ∂ Bz

∂z
= 0, (15.22)

which is trivially satisfied if the fields are functions of r only.
2. Ampére’s law, μ0J = ∇ × B.

μ0 Jθ = −d Bz

dr
(15.23)

and

μ0 Jz = 1

r

d

dr
(r Bθ ) . (15.24)

3. Force balance, ∇ p = J × B.

dp

dr
= Jθ Bz − Jz Bθ

= − d

dr

(
B2

z

2μ0

)
− d

dr

(
B2

θ

2μ0

)
− B2

θ

μ0r

or

d

dr

(
p + B2

θ + B2
z

2μ0

)
= − B2

θ

μ0r
. (15.25)

We now have one equation in three unknowns, so that two of the functions can be
specified.



www.manaraa.com

98 Lectures in Magnetohydrodynamics

We will follow the same procedure for analyzing the more complicated situation
of toroidal equilibrium.

Finally, we remark that in each of the examples considered in this lecture,
the cylinder is infinitely long in the z-direction, i.e., each example is purely two-
dimensional. Recall that the Virial Theorem proven in Lecture 14 assumed that a
surface of integration could be taken completely outside the fluid. This is clearly
impossible if the fluid extends to infinity in some direction. We thus do not expect
the Virial Theorem to apply to these simple examples.
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Lecture 16
Poloidal Beta, Paramagnetism,
and Diamagnetism

If you want high pressure, you must choke off waste.
Joseph Farrell

In the lecture we present some fundamental characteristics of MHD equilibria. For
simplicity, we illustrate these concepts in cylindrical geometry, although they are
generally applicable to other configurations as well.

Consider the equilibrium for the general screw pinch, presented in Lecture 15:

d

dr

(
μ0 p + B2

θ + B2
z

2

)
+ B2

θ

r
= 0. (16.1)

We envision a plasma with radius r0 surrounded by a conducting wall with radius a.
Integrating Eq. (16.1) from r = a to r = r0, we have

2μ0 [p (r0) − p (a)] + B2
θ (r0) − B2

θ (a) + B2
z (r0) − B2

z (a) = −2

r0∫

a

B2
θ

r
dr . (16.2)

We define the volume average of a function as

〈 f 〉 = 2π
∫ a

0 f (r )rdr

2π
∫ a

0 rdr
= 2

a2

a∫

0

f (r )rdr . (16.3)

Taking the volume average of Eq. (16.2), using r0 (the plasma radius) as the inde-
pendent variable,

2μ0 [〈p〉 − p (a)] + 〈B2
θ

〉− B2
θ (a) + 〈B2

z

〉− B2
z (a) =

− 2

(
2

a2

) a∫

0

r0dr0

r0∫

a

B2
θ

r
dr . (16.4)

Schnack, D.D.: Poloidal Beta, Paramagnetism, and Diamagnetism. Lect. Notes Phys. 780,
99–101 (2009)
DOI 10.1007/978-3-642-00688-3 16 c© Springer-Verlag Berlin Heidelberg 2009
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The term on the right-hand side can be integrated by parts according to

u =
r0∫

a

B2
θ

r
dr , du = du

dr0
dr0 = B2

θ (r0)

r0
dr0,

dv = r0dr0, v = 1

2
r2

0 .

We then have

a∫

0

r0dr0

r0∫

a

B2
θ

r
dr =

(
1

2
r2

0

)⎛
⎝

r0∫

a

B2
θ

r
dr

⎞
⎠
∣∣∣∣∣∣

r0=a

r0=0

−
a∫

0

1

2
r 2

0
B2

θ (r0)

r0
dr0.

In the first term on the right-hand side, the first factor vanishes when r0 = 0 and the
second factor vanishes when r0 = a. Therefore

a∫

0

r0dr0

r0∫

a

B2
θ

r
dr = −1

2

a∫

0

B2
θ (r0) r0dr0 = −1

2

(
a2

2

) 〈
B2

θ

〉

= −a2

4

〈
B2

θ

〉
. (16.5)

Equation (16.4) is then

2μ0 [〈p〉 − p (a)] = B2
θ (a) − 〈B2

z

〉+ B2
z (a)

or, with p (a) = 0,

2μ0 〈p〉 = B2
θ (a) + [B2

z (a) − 〈B2
z

〉]
. (16.6)

Defining βp = 2μ0 〈p〉 /B2
θ (a), we have

Fig. 16.1 Exclusion of the
magnetic field by the plasma
when βp > 1
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βp = 1 + B2
z (a) − 〈B2

z

〉

B2
θ (a)

. (16.7)

The parameter βp is called poloidal beta. It is an important parameter in magnetic
fusion energy concepts. It measures the ratio of the internal energy in the fluid, 〈p〉,
to the energy in the poloidal field, B2

θ (a), as measured at the outer boundary. As
seen from Eq. (16.1), the poloidal field provides the confinement by balancing the
outward force of the total pressure gradient.

If βp > 1, then B2
z (a) >

〈
B2

z

〉
, and the presence of the fluid tends to exclude the

axial field, as shown in Fig. 16.1.
In this case the fluid is said to be diamagnetic.
If βp < 1, then B2

z (a) <
〈
B2

z

〉
, and the field excludes the plasma, as shown in

Fig. 16.2.

Fig. 16.2 Penetration of the
magnetic field into the
plasma when βp > 1

In this case the fluid is said to be paramagnetic.
These concepts can be generalized to toroidal geometry.
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Lecture 17
“Force-Free” Fields

Persuasion is often more effectual than force.
Aesop

An equilibrium of some interest is the case of force-free fields. Of course, by def-
inition all equilibrium situations are “force-free,” but in MHD that description is
usually reserved for the special case where the Lorentz force vanishes, i.e.,

J × B = 0. (17.1)

The pressure is constant (∇ p = 0) and the current is everywhere parallel to the
magnetic field, i.e.,

J = α(x)B (17.2)

or

∇ × B = α

μ0
B. (17.3)

(Vector fields with the property that they are everywhere parallel to their curl are
called Beltrami fields.) Taking the divergence of Eq. (17.3) and using ∇ · B = 0
yields

B · ∇α = 0, (17.4)

while taking the curl along with ∇ · B = 0 gives

∇2B −
(

α

μ0

)2

B = 1

μ0
∇α × B. (17.5)

Equation (17.4) says that α(x) is constant along a magnetic field line. Together,
Eqs. (17.4) and (17.5) are two equations that, in principle, can be solved for the
unknowns B and α. (In practice, however, this presents some very subtle mathemat-
ical issues.1)

1 See J. J. Aly, Ap. J. 283, 349 (1984).

Schnack, D.D.: “Force-Free” Fields. Lect. Notes Phys. 780, 103–105 (2009)
DOI 10.1007/978-3-642-00688-3 17 c© Springer-Verlag Berlin Heidelberg 2009
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A case of particular interest occurs when α = constant and the geometry is
cylindrical. We also introduce the notation λ ≡ α/μ0, which has units of L−1. Then
Eq. (17.4) is satisfied automatically and, with Br = 0, the θ and z components of
Eq. (17.5) are

r2 d2 Bθ

dr2
+ r

d Bθ

dr
− (1 − λ2r2

)
Bθ = 0 (17.6)

and

r 2 d2 Bz

dr2
+ r

d Bz

dr
+ λ2r2 Bz = 0. (17.7)

These are both forms of Bessel’s equation. The solution of Eq. (17.6) is

Bθ = B0 J1 (λr ) (17.8)

and the solution of Eq. (17.7) is

Bz = B0 J0 (λr ) , (17.9)

where J0 and J1 are called Bessel functions of the zeroth and first order, respectively.
We remark that Bz(r ) changes sign when λr = j0,1 = 2.4048, where jn,k denotes the
kth zero of the nth order Bessel function. (These are extensively tabulated.) These
solutions are shown in Fig. 17.1 (where Bz is labeled as Bφ).

Fig. 17.1 The Bessel
function model for force-free
magnetic fields. The crosses
indicate some experimental
measurements

Let a conducting wall be located at r = a. A large variety of screw-pinch equi-
libria are represented by varying the parameter λa. From the preceding remarks, we
know that the axial field changes sign (“reverses”) inside the wall if λa > 2.4048.
This parameter regime is called the reversed-field pinch (RFP). If λa � 1, then
since Jν(z) ∼ (z/2)ν/Γ(ν + 1) for |z| � 1, we have Bθ ∼ λr/2 and Bz ∼ 1; the
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poloidal (θ ) component of the magnetic field increases linearly (implying that the
axial current density Jz is constant), and the axial (z) component of the magnetic
field is constant. This parameter regime is called the tokamak. The intermediate
range of λa (sometimes called the paramagnetic pinch, since the axial field is larger
in the center than at the edge) has proven to be less interesting experimentally.

Of course, there is no a priori reason to expect that λ will be constant. In general,
it must be determined from the solution of Eqs. (17.4) and (17.5), along with appro-
priate boundary conditions. (The allowable form the boundary conditions for these
equations is a subtle mathematical problem.) We will return to this point when we
discuss MHD relaxation later in this course.
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Lecture 18
Toroidal Equilibrium; The Grad–Shafranov
Equation1

Donuts. Is there anything they can’t do?
Matt Groening, The Simpsons

We have just considered three examples of MHD equilibria in cylindrical geometry.
These were the θ -pinch, the z-pinch, and the screw pinch. In all of these cases, the
cylinder was considered to be infinitely long. In practice, or course, a cylinder must
have finite length. The achievement of MHD equilibrium was possible because, in
ideal MHD, the fluid cannot flow freely across the magnetic field. However, the
fluid (or plasma) can flow freely along the field, and this allows the fluid to exit the
apparatus through the ends of the cylinder. These inherent end losses have proven
to be detrimental to achieving fluid confinement in finite cylindrical geometry.
(A possible exception of the field-reversed configuration, or FRC, but many of its
interesting properties arise from non-MHD effects, and we will not discuss it further
in this course.)

An ingenious solution to the end-loss problem is to connect the ends of the
cylinder to each other, transforming the cylinder into a torus (shaped like a donut).
This is shown in Fig. 18.1.

Fig. 18.1 Wrapping a
periodic cylinder into a torus

The end losses are thus completely eliminated; all the magnetic field lines remain
within the boundaries of the system.

We are thus motivated to study equilibrium in a toroidal configuration. With a
torus, it is usual to work in a cylindrical coordinate system (R, φ, Z ) in which the

1 We are again motivated by Jeffrey P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press,
New York (1987).

Schnack, D.D.: Toroidal Equilibrium; The Grad–Shafranov Equation. Lect. Notes Phys. 780,
107–120 (2009)
DOI 10.1007/978-3-642-00688-3 18 c© Springer-Verlag Berlin Heidelberg 2009
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cross-sectional area of the fluid lies in the (R, Z ) plane (called the poloidal plane),
and φ is the angle of rotation about the Z -axis. The important situation in which
all quantities are independent of φ is called axisymmetric. This is the equivalent of
z-independence (or translational symmetry) in the straight cylinder. The radius of
the center of the poloidal cross section is called the major radius. The radius of the
outer boundary with respect to the major radius is called the minor radius. These are
shown in Fig. 18.2.

Fig. 18.2 Top view
illustrating the major and
minor radii of a torus

Unfortunately, when a cylindrical MHD equilibrium is bent into a torus it is no
longer an equilibrium. Instead, it tends to expand outward in the major radial (R)
direction. There are two reasons for this. First, a straight cylinder is symmetric about
its central axis. The pressure force are therefore distributed equally on all parts of
the outer boundary. However, in a torus the outer part of the surface has a larger
surface area (S2 ∼ R2) than the inner surface (S1 ∼ R1), as shown in Fig. 18.3.

Fig. 18.3 Illustration of the
net force in the direction of
the major radius exerted by
pressure forces in a torus

Second, just as parallel currents attract each other by means of the Lorentz force,
antiparallel currents repel each other. Each current element at angular location φ

repels (and is repelled by) the current element at angular location φ+π . This results
in a net outward force in the radial (R) direction, as shown in Fig. 18.4.
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Fig. 18.4 Outward expansion
of a toroidal ring of current
due to the Lorentz force

Each of these forces makes the torus expand in major radius. Some externally
supplied currents and fields are necessary for equilibrium to be maintained. The
system is now finite in extent and the Virial Theorem applies.

One way to provide these required external fields is to enclose the minor cross
section of the torus in an electrically conducting shell. If the shell is a perfect con-
ductor, then as the toroidal fluid tries to expand outward the field lines enclosing the
fluid will not be able to penetrate the shell, and they will be compressed between
the fluid and the shell along the outer (in major radius) part of the torus (called the
outboard side). This will appear as an increase in magnetic pressure on the outboard
side, thus opposing the expansion. A new state of equilibrium will be reached in
which the fluid is shifted outward with respect to the geometric center line; the
magnetic axis (∼the center of concentric poloidal field) no longer coincides with
the geometric axis. This is called the Shafranov shift, and its magnitude us usually
denoted by Δ. This is shown in Fig. 18.5.

Fig. 18.5 Stabilization of the
outward expansion with a
perfectly conducting shell.
The outward shift of the
magnetic axis is called the
Shafranov shift

Another way to provide the external field necessary for toroidal equilibrium is
with current carrying Helmholtz coils that induce a field in the Z-direction. If prop-
erly oriented, this field can interact with the toroidal current (Jφ) in the fluid to
provide an inward Lorentz force that balances the outward expanding tendency of
the torus, as shown in Fig. 18.6.
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Fig. 18.6 Stabilization of the
outward shift with a vertical
magnetic field produced by
coils

Note that the effect of the vertical field is to amplify the field due to the plasma cur-
rent on the outboard side, and decrease the field on the inboard side. It thus provides
the same mechanism as the conducting shell. In the former case, the vertical field is
produced by image currents that flow in the shell.

In order to proceed beyond these simple cartoons, we will have to develop some
more general ideas about toroidal equilibria. From now on, we will assume that the
configurations are axisymmetric, i.e., all quantities are independent of the toroidal
angle φ.

We have seen that in a straight (infinitely long) cylinder, the pressure is constant
on concentric cylindrical surfaces, i.e., p = p(r ). Since ∇p = J × B, we have
B · ∇p = 0, so that the pressure is constant along the direction of B. Conversely, the
field lines of B must lie in constant pressure surfaces, i.e., they must wrap around
a cylindrical surface. Since J · ∇p = 0, the current must also lie in these surfaces.
However, it need not be aligned with B; if there is a pressure gradient across these
surfaces, there will be a component perpendicular to B, also within the constant
pressure surface, which is given by J⊥ = B × ∇p/B2.

In an axisymmetric torus, these constant pressure surfaces are shifted outward
with respect to each other, as discussed above. They form nested toroidal surfaces.
However, since B · ∇p = 0, the magnetic field lines must still lie completely within
these surfaces. These are called flux surfaces and can be “labeled” by any variable
that is constant on them, e.g., the pressure; different surfaces can be identified by
their value of pressure.

The equations for a field line in cylindrical geometry are

dR

BR
= Rdφ

Bφ

= d Z

BZ
. (18.1)

Consider a field line that begins at coordinates (R0, φ0, Z0). This point will make an
angle θ0 with respect to an (R, φ) plane through the center of the concentric surfaces
of constant pressure. Now integrate this field line once around the torus, i.e., follow
its trajectory until φ1 = φ0 + 2π . In general this will intersect the poloidal plane at
R1 and Z1, which are different from R0 and Z0, and which make a different angle



www.manaraa.com

18 Toroidal Equilibrium; The Grad–Shafranov Equation 111

θ0 + Δθ with respect to the axis. This field line can be said to map the point (R0,
Z0) into the point (R1, Z1). This is shown in Fig. 18.7.

Fig. 18.7 Locus of the points
of intersection of a field line
with the poloidal plane,
defined by φ = constant

We know that the pressure at (R1, Z1) must be the same as the pressure at point
(R0, Z0). There are two possible types of trajectory (or mapping) for a given field
line. One is that it fills the entire volume ergodically. In that case, the pressure must
be constant throughout the volume. This is not consistent with confinement. While
this can occur dynamically during the evolution of the magnetoplasma system, we
will not consider it as part of our discussion of equilibrium. The second case is that
the field line maps out a two-dimensional surface, which corresponds to a constant
pressure surface. Then there are two further possibilities. The first is that the field
line, while remaining on the surface, nonetheless never returns to its original posi-
tion. These field lines fill the two-dimensional surface ergodically, but they do not
close upon themselves. Surfaces on which the field lines are ergodic are said to be
irrational (for reasons that will be seen below). The second possibility is that the
field line returns exactly to its initial coordinates (closes upon itself) after N turns
around the torus. These surfaces are said to be rational.

These concepts can be quantified by introducing the rotational transform

ι ≡ lim
N→∞

1

N

N∑
n=1

Δθn, (18.2)

where Δθn is the change in the angle θ during the nth toroidal circuit. If ι/2π is a
rational number (i.e., the ratio of two integers), then the field line is closed and the
surface is rational. Otherwise, the field line is not closed and the surface is irrational.
If ι is a rational number, it is the number of times the field line must transit the torus
in the toroidal (φ) direction (sometimes called the long way around) for it to make
one complete transit about the surface in the poloidal (R, Z) plane (the short way
around). The quantity q ≡ 2π/ι is called the safety factor. It is important in the
theories of equilibrium and stability of confined plasmas. We will see it again.

It is possible to define fluxes based on the poloidal field (i.e., BR and BZ )
and toroidal field (Bφ) components. We define dSt and dSp as surface elements
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extending between constant pressure surfaces oriented in the toroidal and poloidal
directions, respectively, as shown in Fig. 18.8.

Fig. 18.8 Geometry for the
calculation of the poloidal
and toroidal flux

The poloidal flux is defined as

ψP(p) =
∫

B · dSp. (18.3)

Since ψP is a function of the pressure, we can (and usually will) adopt ψP as a
surface label. (Any function f (p) that is constant on a flux surface is called a surface
function, and can equally well be adopted as a surface label.) We define the toroidal
flux as

ψt(p) =
∫

B · dSt. (18.4)

It is useful to also define the toroidal current

It(p) =
∫

J · dSt (18.5)

and the poloidal current

Ip(p) =
∫

J · dSp. (18.6)

Since these are all functions of the pressure, they are all surface functions and
could serve as surface labels. Finally, we can define the volume contained within
a constant pressure surface. It is often useful to use the coordinate system shown in
Fig. 18.9.
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Fig. 18.9 An alternative
coordinate system for
calculations in toroidal
geometry

The coordinates of a point can be equally well written as (R, Z) or (r, θ ), where

R = R0 + r cos θ (18.7)

and

Z = r sin θ. (18.8)

Then ψp(r, θ ) = constant defines a flux surface. We assume that an inverse trans-
formation exists (although it may be difficult to compute), i.e., the radius of a flux
surface is given by r = r̂ (θ, ψp). Then the volume contained within the surface with
label ψp is given by

V (ψ) =
2π∫

0

dφ

2π∫

0

dθ

r̂ (θ,ψ)∫

0

(R0 + r cos θ) rdr . (18.9)

We now proceed to derive the equations that describe axially symmetric force
balance in a torus. We proceed as in Lecture 15, i.e.,

1. ∇ · B = 0.
2. Ampére’s law, μ0J = ∇ × B.
3. Force balance, ∇ p = J × B.

1. ∇ · B = 0. The total magnetic field is B = BP + Bφ êφ , where BP is the poloidal
field containing the R and Z components. Since the system is independent of φ,
we have

1

R

∂

∂R
(RBR) + ∂BZ

∂Z
= 0. (18.10)

Since B = ∇ × A, we have
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BR = −∂ Aφ

∂ Z
(18.11)

and

BZ = 1

R

∂

∂ R

(
R Aφ

)
. (18.12)

If we define the stream function ψ = R Aφ , then Eq. (18.10) will be satisfied auto-
matically. The poloidal field can be expressed as

BP = 1

R
∇ψ × êφ. (18.13)

The stream function can be related to the poloidal flux by noting that the latter is a
measure of the flux of BZ passing through the mid-plane of torus (Z = 0) between
the shifted center of the surfaces, Ra , and another radius Rb > Ra , as shown in
Fig. 18.10.

Fig. 18.10 Magnetic field
lines passing through the strip
R0 ≤ R ≤ Ra in the plane
Z = 0

Then

ψP =
2π∫

0

dφ

Rb∫

Ra

RdRBz(R, 0)

= 2π

∫
Rd R

1

R

∂ψ

∂ R

∣∣∣∣
Z=0

= 2πψ (Rb, 0) , (18.14)

where we have set ψ(Ra, 0) = 0. Therefore, we can, and will from now on, label
the flux surfaces with ψ .

2 Ampére’s law, μ0J = ∇ × B. Using the identities ∇ · êφ = 0, ∇ × êφ = êZ/R,
and ∇ êφ = −êφ êR/R, we have



www.manaraa.com

18 Toroidal Equilibrium; The Grad–Shafranov Equation 115

μ0J = ∇ ×
(

1

R
∇ψ × êφ + Bφ êφ

)

= μ0 Jφ êφ + 1

R
∇ (RBφ

)× êφ, (18.15)

where the toroidal current density is

μ0 Jφ = −∇ ·
(

1

R
∇ψ

)
− 1

R2

∂ψ

∂ R
. (18.16)

It is customary to define the operator Δ∗ψ as

Δ∗ψ ≡ R∇ ·
(

1

R
∇ψ

)
− 1

R

∂ψ

∂ R
= R

∂

∂ R

(
1

R

∂ψ

∂ R

)
+ ∂2ψ

∂ Z 2
, (18.17)

so that

μ0 Jφ = − 1

R
Δ∗ψ. (18.18)

3 Force balance, ∇ p = J × B. Since there is no φ dependence, we have BP · ∇ p =
0. Using Eq. (18.13), (∇ψ × êφ) · ∇ p = 0 or

(∇ψ × ∇ p) · êφ = 0. (18.19)

This expression vanishes identically if p = p(ψ), as it must since, by construction,
the pressure is constant on flux surfaces.

Similarly, since J · ∇ p = 0, it follows from Eq. (18.15) that

[∇ (RBφ

)× ∇ p
] · êφ = 0, (18.20)

so that RBφ = F (ψ), which we could not anticipate. The function F (ψ) is related
to the total poloidal current (plasma plus coil) flowing between the major axis of
the torus, R = 0, and any radius Rb:

IP =
∫

JP · dS

=
2π∫

0

dφ

Rb∫

0

Rd R JZ (R, 0)
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= 2π

Rb∫

0

Rd R
1

R

∂

∂ R

(
RBφ

)∣∣∣∣
Z=0

= 2π RBφ(Rb, 0)

= 2π F(ψ). (18.21)

The expression for force balance, ∇ p = J × B, is then

p′∇ψ =
(

Jφ êφ + 1

Rμ0
F ′∇ψ × êφ

)
×
(

1

R
∇ψ × êφ + Bφ êφ

)
,

where (..)′ denotes differentiation with respect to ψ . After some vector algebra, this
becomes

p′ = − 1

μ0 R2

(
Δ∗ψ + F F ′)

or

Δ∗ψ = −μ0 R2 p′ − F F ′. (18.22)

Equation (18.22) is called the Grad–Shafranov equation. It is one of the most
famous equations arising from MHD. It is a second-order partial differential equa-
tion that, given the functions p(ψ) and F(ψ), describes equilibrium in an axisym-
metric torus. The functions p(ψ) and F(ψ) are completely arbitrary and must be
determined from considerations other than theoretical force balance. (For example,
they could be determined experimentally, or from a transport calculation, or sim-
ply fabricated from whole cloth.) We have seen this sort of a situation before in
Lecture 14 when we discussed the equilibrium in the general cylindrical screw
pinch.

At least in principle, given the functions p(ψ) and F(ψ), along with the appro-
priate boundary conditions (generally that ψ is specified on some boundary),
Eq. (18.22) can be solved for ψ(R, Z ). This gives the equilibrium flux distribution.
However, it is important to note that the functions p and F can be (and generally
are) nonlinear, so that these solutions are not guaranteed to either exist or to be
unique; there may be no solution or many solutions, satisfying both (18.22) and the
boundary conditions.

As an example of the character of the solutions of the Grad–Shafranov equation,
we consider the linear case F = constant (F ′ = 0) and

p′ = constant = 8ψ0

μ0 R2
0

(
1 + α2

)
, (18.23)

where ψ0 = ψ(R0, 0) and α is a constant. Then it can be verified that the solution
of Eq. (18.22) is
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ψ(R, Z ) = ψ0 R2

R4
0

(
2R2

0 − R2 − 4α2 Z 2
)
. (18.24)

Surfaces of constant ψ for α = 1 are sketched in Fig. 18.11.

Fig. 18.11 Sketch of the
contours of constant flux (flux
surfaces) Shafranov toroidal
equilibrium, Eq. (18.24)

The flux surfaces are closed and nearly circular near the magnetic axis at R0.
They remain closed but become non-circular (“shaped”) when ψ/ψ0 > 0, and
become open when ψ/ψ0 < 0. The surface ψ/ψ0 = 0 is called a separa-
trix; it separates the regions of closed an open flux surfaces. The constant α

determines the shape of the closed flux surfaces. As α increases from 1, they
become more elongated and vice versa. The boundary of the plasma is defined
as p = 0. The function p(ψ) can be adjusted (by adding a constant) so that
any surface ψ/ψ0 = constant can be the boundary. Finally, since F = constant,
Bφ ∼ 1/R.

Since the Grad–Shafranov equation is nonlinear, there are no general existence
or uniqueness proofs available. There may be one solution, no solutions, or multiple
solutions depending on the specific forms of p(ψ) and F(ψ). Points in parameter
space where solutions coalesce or disappear are called bifurcation points. We will
now present a specific example of this behavior.

Consider the case of a tall, thin toroidal plasma with large aspect ratio.2 The
plasma is surrounded by a conducting wall, as shown in Fig. 18.12.

2 This example is due to K. D. Marx (private communication).
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Fig. 18.12 Tall, thin toroidal
equilibrium configuration

We assume R0 � a and L � a, and write Δ∗ψ as

Δ∗ψ = ∂2ψ

∂ R2
− 1

R

∂ψ

∂ R
+ ∂2ψ

∂ Z 2
. (18.25)

Since R only varies relatively slightly within the plasma, we have ∂/∂ R ∼ 1/a,
(1/R) ∂/∂ R ∼1/a R0, and ∂/∂ Z ∼1/L . Then to the lowest order, Δ∗ψ ∼ ∂2ψ/∂ R2,
and Eq. (18.22) becomes

d2ψ

d R2
= −μ0 R2 p′ − F F ′

= −S′, (18.26)

where S(ψ) = μ0 R2 p(ψ) + F2(ψ)/2 is a nonlinear function of ψ , here chosen
to be

S(ψ) = −C (ψ − ψP) for ψ < ψP

= 0 otherwise
(18.27)

The flux at the plasma boundary is ψP and the flux at the wall is zero; ψ is negative
everywhere; C is a constant. This is sketched in Fig. 18.13.

Fig. 18.13 Nonlinear source
function for the
Grad–Shafranov equation for
the tall, thin equilibrium
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The function S′ is sketched in Fig. 18.14.

Fig. 18.14 The derivative of
the Grad–Shafranov source
function

Now let x = R − R0. Then Eq. (18.26) is

d2ψ

dx2
= 0, ψ > ψP (18.28a)

= C, ψ < ψP. (18.28b)

In the vacuum region, ψ > ψP, the solution is

ψ> = αx + β, (18.29)

and in the plasma, ψ < ψP, the solution is

ψ< = 1

2
Cx2 + γ x + δ. (18.30)

Let the wall be located at xwall = Rwall − R0. The solution must satisfy the boundary
condition ψ> = 0 at x = xwall. Since Eq. (18.28) is symmetric in x , the solution
must be symmetric about x = 0. The solution must be continuous at x = xP. Further,
Bz = dψ/dx must be continuous across the boundary of the plasma at x = xP. The
character of the solution is sketched in Fig. 18.15.

Fig. 18.15 Sketch of the
solution of the
Grad–Shafranov equation for
the tall, thin toroidal
equilibrium
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Combining these conditions yields a quadratic equation for the location of the
plasma boundary, xP, whose solution is

xP = xwall

2

[
1 ±

√
1 − 4 |ψP|

x2
wallC

]
. (18.31)

There are two possible solutions for the location of the plasma/vacuum boundary.
The solution associated with the positive sign is called the deep solution, and the
solution associated with the negative sign is called the shallow solution. These are
sketched in Fig. 18.16.

Fig. 18.16 Sketch of the deep and shallow solutions of the nonlinear Grad–Shafranov equation

In the shallow solution, the plasma is confined in the region 0 ≤ x ≤ xShallow. For
the deep solution, the confinement region is 0 ≤ x ≤ xDeep.

From Eq. (18.31), we see that when 4 |ψP| /x2
wallC > 1 there are no real solutions

and equilibrium is impossible. This occurs when

C <
4 |ψP|
x2

wall

. (18.32)

The quantity C0 = 4 |ψP| /x2
wall is called a bifurcation point for the equilibrium.

Above this value of C there are two solutions. These solutions merge at the bifur-
cation. For values of C below the bifurcation point there are no solutions. When
C → ∞, xDeep → xwall and xShallow → 0, so that the deep solution survives.

It is reasonable to ask which of the two possible equilibrium solutions nature
will decide upon. This is generally determined by the reason of stability and not
equilibrium. Often one of the solutions has more energy than the other. Since nature
likes to seek low-energy states, one might guess that the solution with the lowest
energy is the one that will be observed. However, this must be tested by performing
stability studies on the candidate equilibria. That is one of the topics that we will
now address.
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Lecture 19
Behavior of Small Displacements in Ideal MHD

Every big problem was at one time a wee disturbance.
Anonymous

We have just studied MHD equilibrium, states in which the forces are exactly in
balance. We now begin studies of states that are slightly displaced from equilibrium.

We assume that the fluid and magnetic field are in an equilibrium state, F = 0.
Now let a fluid element be displaced by a small amount ξ from its equilibrium
position. That is, a fluid element with equilibrium position r is displaced slightly to
a new position r′ = r + ξ, as shown in Fig. 19.1.

Fig. 19.1 Geometry for displacement from equilibrium

After this displacement, the system is no longer in equilibrium, i.e., F �= 0. Since
F = 0 when ξ = 0, we can write

F = F {ξ} . (19.1)

(The curly bracket notation is standard here; it will be explained in Lecture 25.)
Further, for small displacements we expect F to be a linear function of ξ.

Now suppose that ξ · F < 0. Then the displacement and the force are in opposite
directions. The force tends to restore the system to its original equilibrium position;
it opposes the displacement. In this case, we might expect the system to oscillate
about its equilibrium position, so that the system can be said to be stable (of course,
this must be proven). On the other hand, when ξ ·F > 0, then the force is in the same
direction as the displacement. The force tends to amplify the displacement and drive
the system further from its equilibrium position. In this case, we might expect the
original displacement to grow in time, so that the system can be said to be unstable
(again, this must be proven). A third possibility is that ξ · F = 0, so that the force

Schnack, D.D.: Behavior of Small Displacements in Ideal MHD. Lect. Notes Phys. 780,
121–128 (2009)
DOI 10.1007/978-3-642-00688-3 19 c© Springer-Verlag Berlin Heidelberg 2009
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and the displacement are orthogonal. The system is then said to be neutrally stable.
In ideal MHD, these are the only possibilities. (For example, when ξ · F < 0 the
restoring force could be so large as to amplify the oscillations, leading to growing
oscillations. This case is called overstable. We will see that this is not allowed in
ideal MHD.)

We can be more specific about these concepts. Let the subscript (..)0 denote equi-
librium quantities. If the equilibrium is stationary (V0 = 0) and the displacements
are small, we can ignore the quadratic term V · ∇V, and the equation of motion is

ρ0
∂V
∂t

= F. (19.2)

We introduce the displacement vector ξ, defined by

V ≡ ∂ξ

∂t
. (19.3)

Then the equation of motion is

ρ0
∂2ξ

∂t2
= F {ξ} . (19.4)

In light of the discussion of the previous paragraph, we anticipate that Eq. (19.4) will
be a wave equation and that F will be a second-order spatial differential operator.
We are thus motivated to represent the time dependence of the displacement ξ in
terms of wave-like solutions as

ξ (r, t) = ξ (r) eiωt + c.c. , (19.5)

where ξ (r) is now a complex function and c.c. denotes the complex conjugate. (This
is required to make the physical displacement real. We will often leave it out of
the ensuing formulas, but it is always implied. Alternatively, one can interpret the
behavior of the physical displacement as being represented by the real part of the
formulas.) Introducing the ansatz (19.5) into (19.4), we have

− ρ0ω
2ξ = F {ξ} . (19.6)

Since F is linear in ξ, we can write symbolically F {ξ} ≡ F · ξ, so that F is now
represented as a tensor (or matrix). Then

− ρ0ω
2ξ = F · ξ (19.7)

is the linear equation of motion for small displacements from stationary equilib-
rium. Since ξ is a as yet undetermined function of space and time, F {ξ} is called a
functional of ξ (see Lecture 25). It is called the ideal MHD force operator. (Heuris-
tically, we can see that if ξ · F {ξ} < 0, this suggests that ω2 > 0 and the motion is
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oscillatory; and if ξ · F {ξ} > 0, this suggests that ω2 < 0, ω = ±iγ , and the motion
will have exponentially growing behavior. However, this still needs to be proven.)
Again, we emphasize that formulas such as Eq. (19.7) only have physical meaning
when combined with their complex conjugate or their real part is taken.

Equation (19.7) is a linear system of the form A · x = λx, where A(→ F) is a
linear operator (matrix, tensor, or differential), x(→ ξ) is a vector, and λ(→ −ω2)
is a constant. The problem is to find non-trivial solutions for x (i.e., x �= 0). This
special important problem is called an eigenvalue problem. Non-trivial solutions
are possible only for certain special values of λ that are roots of the equation
det [(A − λI) · x] = 0. These special values of λ are called the eigenvalues of A,
and the corresponding non-trivial solutions x are called the eigenvectors of A.

Equation (19.7) can be written as the homogenous system

(
F + ρ0ω

2I
) · ξ = 0. (19.8)

This suggests that Eq. (19.8) has non-trivial solutions for ξ only for special values
of the (negative of the square of the) frequency −ω2 that satisfy

det
[
F + ρ0ω

2I
] = 0. (19.9)

The frequencies −ω2 are the eigenvalues of F, and the corresponding displacements
are the eigenvectors.

A Diversion on Homogenous Systems and Eigenvalue Problems

Equation (19.8) stands for three simultaneous homogenous equations in the
three unknowns ξx , ξy , and ξz . It is of the form

(
A − ω2I

) · ξ = 0. (19.10)

The obvious solution of Eq. (19.10) is trivial: ξ = 0. We enquire as to what
is needed to find non-trivial (i.e., ξ �= 0) solutions of this equation.

First consider the simple prototype equation ax = b, where all variables
are scalars. The solution is x = a/b. If b = 0 the equation is homogeneous,
and it is clear that then the only possible way to have x �= 0 is to have a = 0.
Then x can be anything; in particular, it can always be written as a multiple of
the solution x = 1.

Now consider the 2 × 2 system

a11x1 + a12x2 = b1, (19.11)

a21x1 + a22x2 = b2. (19.12)
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The solution is

x1 =

∣∣∣∣
b1 a12

b2 a22

∣∣∣∣
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣
, (19.13)

x2 =

∣∣∣∣
a11 b1

a21 b2

∣∣∣∣
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣
. (19.14)

In analogy with the case ax = b, if b1 = b2 = 0, the solution is x1 = x2 = 0
unless

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12 ≡ det A = 0. (19.15)

Equation (19.15) means that equations (19.11) and (19.12) are no longer inde-
pendent equations; one is a linear combination of the other. In that case, we
can determine the ratio x1/x2 from either Eq. (19.11) or Eq. (19.12); they
must give the same result. From Eq. (19.11) we have x1/x2 = −a12/a11,
and from Eq. (19.12) x1/x2 = −a22/a21. For these to be the same we require
a21/a11 = a22/a21, which is identical to Eq. (19.15). If the system were N×N ,
the vanishing of the determinant would ensure that only N −1 of the equations
are independent.

Now consider the problem

(A − λI) · x = 0, (19.16)

[see, for example, Eq. (19.10)]. By the above argument, the only solution of
Eq. (19.16) is x = 0, unless

det (A − λI) = 0. (19.17)

This is called the characteristic (or eigenvalue) equation. (Apparently the
German word eigen best translates to English as something like peculiar,
meaning “characteristic of an individual.” The mathematical usage is often
attributed to David Hilbert, and who are we to argue?) It can be solved for λ;
this determines special values of λ for which the system of equations (19.16)
are no longer independent. These special values of λ are called eigenvalues or
characteristic (or, perhaps, peculiar) values. Again consider the 2 × 2 system
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(
a11 − λ a12

a21 a22 − λ

)(
x1

x2

)
= 0. (19.18)

The characteristic equation is

(a11 − λ) (a22 − λ) − a12a21 = 0. (19.19)

It has two roots, λ1 and λ2. When λ = λ1 or λ = λ2, the two equations
represented by (19.18) are no longer independent. For example, when λ = λ1,
either of the equations

(a11 − λ1) x1 + a12x2 = 0 (19.20)

or

a21x1 + (a22 − λ1) x2 = 0 (19.21)

can be solved for the ratio x1/x2. For these to yield the same result requires

(a11 − λ1) (a22 − λ1) − a12a21 = 0, (19.22)

which is just Eq. (19.19). The same holds for λ = λ2, but the ratio x1/x2 will
be different.

There are two vectors x(1) and x(2), corresponding to the two numbers λ1

and λ2, whose components x1 and x2 have the ratios x1/x2 determined by the
procedure just given. These are called eigenvectors. Only the ratio of their
components can be determined.

We anticipate that, in differential form, F will contain the vector operator ∇. For
the important special case of an infinite (or periodic) system, we can let ∇ → ik,
where k is the wave vector in the direction of wave propagation with amplitude
k = 2π/λ. (Here λ is the wavelength, not to be confused with the eigenvalue of
the previous paragraph.) Equation (19.9) then becomes a set of linear algebraic
equations whose roots can be written as

ω2 = ω2(k). (19.23)

This is called the dispersion relation for the system under investigation. The roots
(19.23) are also called the “characteristic oscillations,” or the “normal modes.”

If the system is not spatially periodic, or the substitition ∇ → ik cannot be made
for any other reason, then Eq. (19.8) is a differential equation that must be solved
subject to the proper boundary conditions.
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The procedure for studying the behavior of small displacements from stationary
equilibrium in ideal MHD is therefore:

1. Find the functional form F {ξ}.
2. Determine the eigenvalues of

(
F + ρ0ω

2I
) · ξ = 0. This may require solving a

differential equation or the algebraic equation det
[
F + ρ0ω

2I
] = 0.

3. Examine the behavior of the eigenvalues of this equation with respect to their
implications for oscillatory of exponentially growing behavior.

In Lecture 2 we introduced the concept of the adjoint, F†, of an operator F. The
adjoint has the property that if u = F · x, then u∗ = F† · x∗, where (..)∗ denotes the
complex conjugate. If F is a matrix, then F †

i j = F∗
j i . If F = F†, then F is said to be

self-adjoint. An important property of a self-adjoint operator is that it satisfies

∫
dV u∗ · F · v =

∫
dV v∗ · F · u. (19.24)

(More generally, (u, F · v) = (v, F · u), where (x, y) denotes an inner product in
function space.)

We will soon prove that the ideal MHD force operator is self-adjoint. This
has important consequences for the behavior of small oscillations in ideal MHD.
First, let ξi and ξ j be two eigenvectors of F corresponding to the eigenvalues −ω2

i

and −ω2
j , respectively, i.e.,

F · ξi = −ρ0ω
2
i ξi (19.25)

and

F · ξ j = −ρ0ω
2
jξ j . (19.26)

The complex conjugate of Eq. (19.26) is

(
F · ξ j

)∗ = F · ξ∗
j = −ρ0

(
ω2

j

)∗
ξ∗

j , (19.27)

since F is assumed to be self-adjoint. Now dot ξ∗
j with Eq. (19.25), and ξi with

Eq. (19.26), subtract, and integrate over all space:

∫ (
ξ∗

j · F · ξi − ξi · F · ξ∗
j

)
dV = −ρ0

[
ω2

i − (ω2
j

)∗] ∫
ξi · ξ∗

j dV . (19.28)

The left-hand side vanishes by Eq. (19.24), since F is assumed to be self-adjoint.
Therefore,

ρ0

[
ω2

i − (ω2
j

)∗] ∫
ξi · ξ∗

j dV = 0. (19.29)
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There are two non-trivial possibilities for satisfying Eq. (19.29). First, let i = j .
Then, since

∣∣ξi

∣∣2 = ξ∗
i · ξi �= 0 because ξi is a non-trivial solution of Eq. (19.8), we

require

ω2
i = (ω2

i

)∗
, (19.30)

i.e., the eigenvalues of F are real. Therefore, in ideal MHD the normal modes
are either purely oscillating or purely growing (or damped). Overstable modes are
impossible. If ω2

i > 0, then ωi = ±Ωi , and the displacement evolves according to
ξ ∼ e±iΩi t , so the normal modes are pure oscillations. If ω2

i < 0, then ωi = ±iγi ,
the displacement evolves according to ξ ∼ e±γ t , and one of the normal modes
exhibits pure exponential growth.

The second possibility for satisfying Eq. (19.29) is that i �= j and ω2
i �= ω2

j . Then

∫
ξi · ξ∗

j dV = 0, (19.31)

so that the eigenvectors of F are orthogonal. Further, they can be normalized so that

∫
ξi · ξ∗

j dV = δi j , (19.32)

in which case they are said to be orthonormal.
Finally, it can be shown that the eigenvectors ξi form a complete set. By this we

mean that any “piecewise continuous” function ξ(r) can be approximated “in the
mean” arbitrarily closely by a linear combination of the eigenfunctions ξi . That is,
for any reasonably behaved displacement ξ(r), we can write

ξ(r, t) =
∞∑

k=1

akξk(r, t), (19.33)

where ak are complex numbers called expansions coefficients. Dotting Eq. (19.33)
with ξ∗

j and integrating, we have

∫
ξ∗

j · ξdV =
∞∑

k=1

ak

∫
ξ∗

j · ξdV ,

so that, in light of Eq. (19.32),

a j =
∫

ξ∗
j · ξdV . (19.34)
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Therefore, the behavior of any arbitrary displacement can be obtained by knowing
the behavior of the eigenvectors ξk . If we find the eigenvectors and eigenvalues, we
will know the behavior of the system.

Recall that the time dependence of the eigenvectors is given by ξk(r, t) =
ξk(r)eiωk t , so that

ξ(r, t) =
∞∑

k=1

akeiωk tξk(r). (19.35)

Therefore, if all of the quantities ωk are real (ω2
k > 0), then the system exhibits

oscillatory behavior about its equilibrium position; it is stable. However, if one of
the ωk is imaginary (ω2

k < 0), then the system exhibits exponential deviation from
its equilibrium position. The existence of a single unstable eigenvector renders the
entire system unstable.

Now we just need to find the functional form of F {ξ} and prove that it is
self-adjoint!
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Lecture 20
Linearized Equations and the Ideal MHD
Force Operator

Be wise. Linearize.
Ed Greitzer

The ideal MHD equations are

∂ρ

∂t
= −∇ · ρV, (20.1)

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇ p + 1

μ0
(∇ × B) × B, (20.2)

∂p

∂t
+ V · ∇ p = −Γp∇ · V, (20.3)

and

∂B
∂t

= ∇ × (V × B) . (20.4)

Since we are interested in the behavior of a system when it is perturbed only
slightly from its equilibrium state, we write all dependent variables in the form

f (r, t) = f0 (r) + f1 (r, t) , (20.5)

where f0 is the value in the equilibrium state (i.e., the solution of Eqs. (20.1, 20.2,
20.3, 20.4) when ∂/∂t = 0) and f1 is a small perturbation, i.e., | f1/ f0| � 1. When
we substitute the ansatz (20.5) into Eqs. (20.1, 20.2, 20.3, 20.4), the nonlinear terms
(like V · ∇V and V × B, for example) will behave as

uv = (u0 + u1) (v0 + v1)

= u0v0

[
1 + u1

u0
+ v1

v0
+
(

u1

u0

)(
v1

v0

)]

≈ u0v0 + v0u1 + u0v1, (20.6)

Schnack, D.D.: Linearized Equations and the Ideal MHD Force Operator. Lect. Notes Phys. 780,
129–131 (2009)
DOI 10.1007/978-3-642-00688-3 20 c© Springer-Verlag Berlin Heidelberg 2009
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since the product (u1/u0)(v1/v0) is much, much less than either u1/u0 or v1/v0. The
resulting equations will be linear in the perturbed quantities f1; not surprisingly, the
formal process is called linearization. Assuming a stationary (V0 = 0) equilibrium
state (∇ p0 = J0 × B0), the linearized ideal MHD equations are

∂ρ1

∂t
= −∇ · ρ0V1, (20.7)

ρ0
∂V1

∂t
= −∇ p1 + J0 × B1 + J1 × B0, (20.8)

∂p1

∂t
= −V1 · ∇ p0 − Γp0∇ · V1, (20.9)

and

∂B1

∂t
= ∇ × (V1 × B0) , (20.10)

where μ0J0 = ∇ ×B0 and μ0J1 = ∇ ×B1. Given the equilibrium state ρ0(r), p0(r),
and B0(r), these are eight equations that can be solved for the eight unknowns ρ1,
V1, p1, and B1.

Following Lecture 19, our goal is to write Eqs. (20.7), (20.8), (20.9), (20.10) in
the form of a wave equation

ρ0
∂2ξ

∂t2
= F {ξ} , (20.11)

where the displacement ξ is defined by

V1 = ∂ξ

∂t
. (20.12)

Substituting Eq. (20.12) into the continuity equation, Eq. (20.7), we have

∂ρ1

∂t
= −∇ · ρ0V1

= −V1 · ∇ρ0 − ρ0∇ · V1

= −∂ξ

∂t
· ∇ρ0 − ρ0∇ · ∂ξ

∂t

or, integrating with respect to time,

ρ1 = −ξ · ∇ρ0 − ρ0∇ · ξ. (20.13)

Similarly, the energy equation, Eq. (20.9), becomes



www.manaraa.com

20 Linearized Equations and the Ideal MHD Force Operator 131

p1 = −ξ · ∇ p0 − Γp0∇ · ξ, (20.14)

and Eq. (20.10) is

Q ≡ B1 = ∇ × (ξ × B0) . (20.15)

(This is the standard notation.) Substituting Eqs. (20.12), (20.13), (20.14), (20.15)
into the perturbed equation of motion, Eq. (20.8), we finally find

ρ0
∂2ξ

∂t2
= J0 × [∇ × (ξ × B0)] + 1

μ0
{∇ × [∇ × (ξ × B0)]} × B0

+∇ (ξ · ∇ p0) + Γ∇ (p0∇ · ξ) (20.16)

≡ F {ξ} . (20.17)

Equation (20.16) is the ideal MHD wave equation, and Eq. (20.17) defines the ideal
MHD force operator. It will soon be important to remember that F depends on ξ,
but not on ξ̇.
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Lecture 21
Boundary Conditions for Linearized Ideal MHD

BOUNDARY, n. An imaginary line between two nations,
separating the imaginary rights of one from the imaginary
rights of the other.

Ambrose Bierce, The Devil’s Dictionary

Before we prove that F {ξ} is self-adjoint, we must derive the boundary conditions
to be imposed on the solutions of the linearized ideal MHD wave equation

ρ0ξ̈ = J0 × Q + 1

μ0
(∇ × Q) × B0 + ∇ (ξ · ∇ p0) + Γ∇ (p0∇ · ξ) , (21.1)

where Q = ∇ × (ξ × B0). We consider the system to consist of a conducting fluid
(a plasma) surrounded by a vacuum, all enclosed within a perfectly conducting
boundary, as shown in Fig. 21.1.

Fig. 21.1 A plasma in equilibrium surrounded by a vacuum and a perfectly conducting boundary

The conducting boundary (i.e., wall) is denoted as W , and the surface separating the
plasma and the vacuum is denoted as S. The magnetic field is everywhere tangent
to this surface, by construction.

Schnack, D.D.: Boundary Conditions for Linearized Ideal MHD. Lect. Notes Phys. 780,
133–136 (2009)
DOI 10.1007/978-3-642-00688-3 21 c© Springer-Verlag Berlin Heidelberg 2009
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Let B̂ = ∇×Â be the magnetic field in the vacuum. Since there can be no electric
current in the vacuum,

∇ × ∇ × Â = 0, (21.2)

where Â is the vector potential in the vacuum region. At the wall W , the tangential
component of the electric field must vanish: n̂ × Ê = 0, where n̂ is the outward
drawn normal. Since Ê = −∂Â/∂t , we require that

n̂ × Â
∣∣∣
W

= 0. (21.3)

This is the boundary condition to be applied to Eq. (21.2) at W .
Now consider the plasma/vacuum interface S. Here we define n̂ to point from the

plasma into the vacuum. From Maxwell’s equations, we know that, at the interface
S, the magnetic field must satisfy the conditions

�
n̂ · B

�
= 0, (21.4)

�
n̂ × B

�
= μ0K, (21.5)

and

n̂ ×
�

E
�

= 0, (21.6)

where
�

f
�

≡ fV − fP is the jump in a quantity across the interface and K is a
surface current flowing within the interface S. If K = 0, then all components of B
are continuous across S.

The equilibrium force balance condition is

∇
(

p + B2

2μ0

)
= B · ∇B

μ0
. (21.7)

Now define a variable n that measures the distance in the local direction of n̂, i.e.,
across the interface at n = 0. Then n̂ · ∇ ≡ ∂/∂n, and the normal component of
Eq. (21.7) is

∂

∂n

(
p + B2

2μ0

)
= 1

μ0
n̂ · (B · ∇B) . (21.8)

Integrating this expression across the interface S, we have
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ε∫

−ε

∂

∂n

(
p + B2

2μ0

)
dn = 1

μ0

ε∫

−ε

n̂ · (B · ∇B) dn. (21.9)

When ε → 0, this becomes

�

p + B2

2μ0

�

= 1

μ0
lim
ε→0

ε∫

−ε

n̂ · (B · ∇B) dn = 0, (21.10)

since the integrand on the right-hand side is continuous across S.
The condition (21.10) is called the pressure balance condition. Let r0 be the

equilibrium position of the plasma/vacuum interface S0. Then, from Eq. (21.10), the
equilibrium variables must satisfy

p0 (r0) + B2
0 (r0)

2μ0
= B̂2

0 (r0)

2μ0
, (21.11)

since the pressure in the vacuum must vanish. During the displacement of the
plasma, the plasma/vacuum interface will also be displaced to a new location
r′ = r0 + ξ. At this perturbed boundary S′, the pressure balance condition is

p0 (r0 + ξ) + p1 (r0 + ξ) + 1

2μ0
[B0 (r0 + ξ) + B1 (r0 + ξ)]2 =

1

2μ0

[
B̂0 (r0 + ξ) + B̂1 (r0 + ξ)

]2
. (21.12)

To the lowest order in small quantities, this becomes

p0
(
r′)+ p1

(
r′)+ 1

2μ0

[
B2

0

(
r′)+ 2B0

(
r′) · B1

(
r′)] =

1

2μ0

[
B̂2

0

(
r′)+ 2B̂0

(
r′) · B̂1

(
r′)] . (21.13)

All quantities at S′ can be related to quantities at S0 by

f
(
r′) = f (r0) + ξ · ∇ f (r0) , (21.14)

and as a consequence, to the lowest order B0
(
r′) · B1

(
r′) = B0 (r0) · B1 (r0). The

perturbed pressure is determined from the linearized energy equation

p1 = −ξ · ∇ p0 − Γp0∇ · ξ. (21.15)

Finally, substituting all this into Eq. (21.13) and using the equilibrium pressure bal-
ance condition, Eq. (21.11), we find that the condition
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− Γp0∇ · ξ + 1

μ0
(ξ · ∇B0 + Q) · B0 = 1

μ0

(
ξ · ∇B̂0 + ∇ × Â

)
· B0 (21.16)

must be satisfied at the equilibrium interface S0.
A second condition to be satisfied at S0 is found from Eq. (21.6). Let the bound-

ary be moving with velocity V1 = ∂ξ/∂t , E be the electric field measured in
the stationary frame of reference, and E∗ = E + V1 × B0 be the electric field
seen in the frame moving with the boundary. In the plasma, E = −V1 × B0,
by Ohm’s law. Therefore E∗ = 0; the electric field in the frame moving with
the boundary must vanish on the plasma side of the interface. Then Eq. (21.6)
requires that n̂ × Ê∗ = 0, i.e., the tangential electric field in the frame moving
with the boundary must vanish in the vacuum. Since Ê∗ = Ê + V1 × B̂0 by
the (non-relativistic) law of transformation of the electromagnetic fields, we have

n̂ × Ê = B̂0 (n̂ · V1) − V1
(
n̂ · B̂0

)
. (21.17)

But on S0, n̂ · B0 = n̂ · B̂0 = 0, by construction. Then using Ê = −∂Â/∂t and
V1 = ∂ξ/∂t , we require that

n̂ × Â = − (n̂ · ξ) B̂0 (21.18)

be satisfied on S0.
Then the boundary value problem for determining the normal modes of the sys-

tem can be stated as follows. In the fluid, solve

ρ0ξ̈ = J0 × Q + 1

μ0
(∇ × Q) × B0 + ∇ (ξ · ∇ p0) + Γ∇ (p0∇ · ξ), (21.19)

where Q = ∇ × (ξ × B0), and in the vacuum, solve

∇ × ∇ × Â = 0, (21.20)

subject to the matching conditions

− Γp0∇ · ξ + 1

μ0
(ξ · ∇B0 + Q) · B0 = 1

μ0

(
ξ · ∇B̂0 + ∇ × Â

)
· B0 (21.21)

and

n̂ × Â = − (n̂ · ξ) B̂0 (21.22)

at the vacuum/fluid interface, and the boundary condition

n̂ × Â = 0 (21.23)

at the perfectly conducting wall.
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Lecture 22
Proof that the Ideal MHD Force Operator
is Self-Adjoint

The mind’s first step to self awareness must be through
the body .

George Sheehan

The ideal MHD equation of motion is

ρ0ξ̈ = F {ξ} . (22.1)

We will now prove that the ideal MHD force operator F {ξ} is self-adjoint.1 That
is, we will demonstrate that for any two vector fields ξ and η satisfying the same
boundary conditions,

∫
dV η · F {ξ} =

∫
dV ξ · F {η}. (22.2)

Proof The total energy of the system is

U =
∫ (

1

2
ρV 2 + B2

2μ0
+ p

Γ − 1

)
dV . (22.3)

We have seen that this quantity is conserved in ideal MHD, so that

U = K + δW = constant. (22.4)

Here, K is the kinetic energy and δW is the change in the potential energy of the
system, as a result of the displacement. Therefore

U̇ = K̇ + δẆ = 0. (22.5)

1 This proof is due to I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. Roy.
Soc. (London), A244, 17 (1958).

Schnack, D.D.: Proof that the Ideal MHD Force Operator is Self-Adjoint. Lect. Notes Phys. 780,
137–140 (2009)
DOI 10.1007/978-3-642-00688-3 22 c© Springer-Verlag Berlin Heidelberg 2009
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Now the kinetic energy is

K = 1

2

∫
ρ0V 2

1 dV = 1

2

∫
ρ0ξ̇

2dV , (22.6)

or

K
{
ξ̇, ξ̇
} = 1

2

∫
ρ0ξ̇ · ξ̇dV , (22.7)

so that K is a symmetric functional of ξ̇. Then the rate of change of kinetic energy is

K̇ =
∫

ρ0ξ̇ · ξ̈dV = 2K
{
ξ̇, ξ̈
}

= 2K
{
ξ̈, ξ̇
} (22.8)

because of the symmetry of the arguments. In light of Eq. (22.1), this can be
written as

K̇ = 2K

{
1

ρ0
F {ξ} , ξ̇

}
(22.9)

or, from Eq. (22.6),

K̇ = −δẆ

= −δW
{
ξ̇, ξ
}− δW

{
ξ, ξ̇
}
. (22.10)

Let r0 stands for the equilibrium position of the system and let W (r0) be the
equilibrium potential energy of the system. The potential energy after a small dis-
placement ξ will change according to

W (r0 + ξ) = W (r0)+
∑

i

(
∂W

∂ri

)

0

ξi + 1

2

∑
i

∑
j

(
∂2W

∂ri∂r j

)

0

ξiξ j +· · · · (22.11)

But equilibrium is an extremum of the potential energy, so that (∂W/∂ri )0 = 0.
Therefore

δW = W (r0 + ξ) − W (r0)

= 1

2

∑
i

∑
j

(
∂2W

∂ri∂r j

)

0

ξiξ j

= δW {ξ, ξ} , (22.12)

which is a symmetric quadratic form, so that δW is also a symmetric function of
its arguments. For any two vector functions ξ and η satisfying the same boundary
conditions,
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δW {ξ,η} = δW {η, ξ} . (22.13)

Applying this to Eq. (22.10), we have

K̇ = −2δW
{
ξ̇, ξ
}

(22.14)

or, using Eq. (22.9),

K

{
1

ρ0
F {ξ} , ξ̇

}
= −δW

{
ξ̇, ξ
}
. (22.15)

Now, it is important to recognize that ξ and ξ̇ are independent functions. To avoid
confusion on this point, we replace ξ̇ by η, so that Eq. (22.15) becomes

K

{
1

ρ0
F {ξ} ,η

}
= −δW {η, ξ} . (22.16)

Equation (22.16) must hold for arbitrary ξ and η. In particular, it must hold if we
interchange ξ and η, i.e.,

K

{
1

ρ0
F {η} , ξ

}
= −δW {ξ,η} . (22.17)

Using Eqs. (22.13) and (22.16),

δW {ξ,η} = δW {η, ξ}

= −K

{
1

ρ0
F {ξ} ,η

}
. (22.18)

Therefore, from Eq. (22.9),

K

{
1

ρ0
F {η} , ξ

}
= −δW {ξ,η}

= K

{
1

ρ0
F {ξ} ,η

}
. (22.19)

But, by definition,

K {ξ,η} = 1

2

∫
dVρ0ξ · η,

so that
∫

dV η · F {ξ} =
∫

dV ξ · F {η}, (22.20)

which is identical to Eq. (22.2). Therefore, F {ξ} is self-adjoint. Q.E.D.
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This ingenious proof relies only on the conservation of energy, on F being inde-
pendent of ξ̇, and on K and δW being symmetric functions of their arguments. It
does not depend on any specific form of F. In ideal MHD, F depends on V = ξ̇

only through B1, defined by Faraday’s law and Ohm’s law; the explicit dependence
on ξ̇ integrates out through the definition Q = ∇ × (ξ × B0). Note that, if the equi-
librium is not stationary, so that V0 �= 0, then the explicit dependence on ξ̇ will
remain, and F is no longer self-adjoint. Similarly, the so-called two-fluid extensions
of Ohm’s law negate the convenient time integration that occurs in ideal MHD, and
self-adjointness is also lost in this case.

From Eq. (22.19), we have (with ξ = η)

δW {ξ, ξ} = −K

{
1

ρ0
F {ξ} , ξ

}

= −1

2

∫
dV ξ · F {ξ}. (22.21)

Therefore, if ξ · F {ξ} > 0 the displacement decreases the potential energy of the
system and causes instability. This is consistent with the previous discussions.

In Lecture 19, we discussed some consequences of the self-adjointness of F.
These are

1. The eigenfunctions −ω2
k are real.

2. The eigenfunctions ξk are orthogonal.
3. The eigenfunctions ξk form a complete set.

A further important consequence is that an energy principle exists. Substitute
the eigenfunction expansion ξ = ∑ j a jξ j into the expression for the change in the
potential energy, Eq. (22.21), and use Eq. (22.1) and the fact that F is linear:

δW = 1

2

∑
j

∑
k

a j akω
2
k

∫
ρ0ξ j · ξkdV

= 1

2

∑
j

∑
k

a j akω
2
kδ jk

= 1

2

∑
j

a2
j ω

2
j . (22.22)

Therefore, δW < 0 if and only if there exists at least one unstable eigenmode
(with ω2

j < 0), i.e., δW < 0 is a necessary and sufficient condition for instability.
Mathematically, this means that we can use a variational principle to test whether
the system is unstable without having to solve the underlying boundary value
problem. This is a very powerful tool for theoretical and computational analysis.
However, it requires a discussion of the calculus of variations. We will defer this
discussion until later in this course.
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Lecture 23
Waves in a Uniform Medium: Special Cases

I’m pickin’ up good vibrations.
The Beach Boys

We consider the special case of an infinite, uniform medium with B0 = B0êz and
J0 = 0. In that case we can expand an arbitrary displacement in plane wave solu-
tions as

ξ (r, t) =
∑

k

ξkei(k·r+ωk t), (23.1)

where k is the wave vector and the addition of the complex conjugate is implied.
When we substitute this into the ideal MHD wave equation, we find that ∇ →
ik and ∂/∂t → iω, so that the problem is reduced to algebra. The result of the
substitution is

ω2ξ = V 2
A

{
k × [k × (ξ × b̂

)]}× b̂ + C2
S (k · ξ) ξ, (23.2)

where V 2
A = B2

0/2μ0ρ0 is the square of the Alfvén speed, C2
S = Γp0/ρ0 is the

square of the sound speed, and b̂(= êz) is a unit vector in the direction of the
equilibrium magnetic field. This represents three coupled homogenous equations
of the form

(
A − ω2I

) · ξ = 0 in the three unknowns ξx , ξy , and ξz . It has non-trivial
solutions when

det
(
A − ω2I

) = 0. (23.3)

Equation (23.3) is the dispersion relation for waves in a uniform medium. The solu-
tions ω2(k) are the characteristic vibrational frequencies of the system

Expanding the vector identities, Eq. (23.2) can be rewritten as

[
ω2 − V 2

A

(
k · b̂

)2]
ξ = [(C2

S + V 2
A

)
(k · ξ) − V 2

A

(
k · b̂

) (
ξ · b̂

)]
k

− V 2
A

(
k · b̂

)
(k · ξ) b̂. (23.4)

Schnack, D.D.: Waves in a Uniform Medium: Special Cases. Lect. Notes Phys. 780,
141–145 (2009)
DOI 10.1007/978-3-642-00688-3 23 c© Springer-Verlag Berlin Heidelberg 2009
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This can be put in another form by defining a unit vector in the direction of k as
k = kk̂, and defining θ as the angle between the direction of propagation and the
magnetic field, k̂ · b̂ = cos θ . The result is

[
ω2

k2
− V 2

A cos2 θ

]
ξ = [(C2

S + V 2
A

) (
k̂ · ξ

)− (ξ · b̂
)

V 2
A cos θ

]
k̂

− (k̂ · ξ
)

V 2
A cos θ b̂. (23.5)

Equation (23.5) contains three independent vectors: the displacement ξ, the direc-
tion of propagation k̂, and the direction of the magnetic field b̂. The properties of the
waves depend on their relative orientation. In this lecture, we will consider several
special cases.

Case I. Transverse Waves:
Here the displacement is perpendicular to the direction of propagation or k̂ · ξ = 0,
as shown in Fig. 23.1.

Fig. 23.1 Displacement (ξ) and propagation vector (k̂) for transverse waves

Then Eq. (23.5) becomes

[
ω2

k2
− V 2

A cos2 θ

]
ξ + (ξ · b̂

)
V 2

A cos θ k̂ = 0. (23.6)

Since ξ and k̂ are linearly independent, their coefficients must vanish individually.
Case IA: We first examine the vanishing of the coefficient of k̂,

(
ξ · b̂

)
V 2

A cos θ = 0. (23.7)

There are two possibilities, which are as follows:.

1. ξ · b̂ = 0. If cos θ = k̂ · b̂ �= 0, then b̂ must be perpendicular to ξ, so ξ is
perpendicular to both k̂ and b̂, as shown in Fig. 23.2.

2. cos θ = k̂·b̂ = 0 or θ = ±π/2. Then k̂, b̂, and ξ are mutually perpendicular. This
is just a special case of possibility (1), above. Together, (1) and (2) determine the
polarization of the wave.
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Fig. 23.2 The displacement (ξ) is perpendicular to both the direction of propagation (k̂) and the
direction of the magnetic field (b̂)

Case IB: The vanishing of the coefficient of ξ in Eq. (23.6) leads to

ω

k
= ±VA cos θ (23.8)

or

ω = ±k‖VA, (23.9)

where k‖ = k cos θ is the component of k parallel to the magnetic field. The polar-
ization of this wave is given by IA1 and IA2, above. It is a transverse wave that
propagates along the magnetic field. It does not propagate across the magnetic field.
This is another manifestation of the anisotropy introduced by the presence of the
magnetic field. Its phase velocity is ω/k‖=VA. Note that if there is no magnetic
field, VA = 0 and the wave does not exist. It only occurs in magnetized fluids.1 This
is the famous Alfvén wave for which Hannes Alfvén won the Nobel Prize in 1970.

The behavior of the perturbed magnetic field in the Alfvén wave is found from
Faraday’s law and Ohm’s law. In this case, the former is

ωB1 = −k × E1 (23.10)

and the latter is

E1 = −iωB0
(
ξ × b̂

)
. (23.11)

These can be combined as

B1 = ik B0
[
ξ
(
k̂ · b̂

)− b̂
(
k̂ · ξ

)]
. (23.12)

1 We have remarked that the Alfvén wave is a new type of wave, i.e., a shear wave that can propa-
gate in a fluid. It is actually the remnant of a light wave in the very low-frequency limit. The inertia
of the medium plays the role of the displacement current. Viewed this way, its polarization is not
surprising.
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The last term on the right-hand side vanishes because the wave is transverse in this
case, i.e., k̂·ξ = 0. Then B1 = ik B0

(
k̂ · b̂

)
ξ = ik B0 cos θξ. The perturbed magnetic

field B1 is thus in the same direction as ξ, but is π/2 out of phase (due to the i).

Case II. Longitudinal Waves:
For a longitudinal wave, the displacement is parallel to the direction of propagation,
or ξ = ξ k̂, as shown in Fig. 23.3.

Fig. 23.3 In a longitudinal wave, the displacement (ξ) is parallel to the direction of propagation
(k̂) but makes an angle with the direction of the magnetic field (b̂)

After some algebra, Eq. (23.5) becomes

[
ω2

k2
− (C2

S + V 2
A

)]
k̂ + V 2

A cos θ b̂ = 0. (23.13)

We consider the following special cases.
Case IIA: Here cos θ = k̂ · b̂ = 0, so that k̂ is perpendicular to b̂ and θ = ±π/2.

Then Eq. (23.13) reduces to

ω = ± (C2
S + V 2

A

)1/2
k. (23.14)

This is a longitudinal wave that propagates across the magnetic field. The square of
its phase velocity is the sum of the squares of the sound speed and the Aflvén speed.
It is called the magneto-acoustic (MA) wave.

The perturbed magnetic field is found from Eq. (23.12) with k̂ · b̂ = 0 and
k̂ · ξ = ξ :

B1 = −ik B0ξ b̂. (23.15)

The perturbed field is parallel to the mean field and −π/2 out of phase with the
displacement. The perturbed field thus reinforces the mean field during a part of
the cycle and weakens it during another part. This causes a perturbed magnetic
pressure that acts in the same manner as the perturbed fluid pressure. It can support
a longitudinal wave.
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Case IIB: In this special case, b̂, k̂, and ξ are all parallel. The Eq. (23.13) becomes

ω = ±kCs. (23.16)

The perturbed magnetic field vanishes:

B1 = ikB0
[
ξ
(
k̂ · b̂

)− b̂
(
k̂ · ξ

)] = ik B0ξ (cos θ − cos θ) = 0. (23.17)

This is a sound wave propagating parallel to the magnetic field.
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Lecture 24
Waves in a Uniform Medium: Arbitrary Angle
of Propagation

Crude classifications and false generalizations are the
curse of organized life.

George Bernard Shaw

In Lecture 23, we showed that in an infinite, uniform medium, the solutions of
the ideal MHD wave equation could be decomposed into plane wave solutions
ξkei(k·r+ωk t) that satisfy

[
ω2 − (k̂ · b̂

)2
V 2

A

]
ξ = [(C2

S + V 2
A

) (
k̂ · ξ

) − V 2
A

(
ξ · b̂

) (
k̂ · b̂

)]
k̂

− V 2
A

(
k̂ · ξ

) (
k̂ · b̂

)
b̂. (24.1)

There we examined several special cases of propagation both perpendicular and
parallel to the magnetic field. Here we examine the more general case of propagation
at an arbitrary angle θ = cos−1

(
k̂ · b̂

)
to the magnetic field.

Equation (24.1) is a 3 × 3 system, so its characteristic equation will yield three
roots for ω2: ω2

0, ω2
1, and ω2

2. This results in six possible waves:

• Two shear waves, with ω = ±ω0;
• Two MA waves, with ω = ±ω1; and
• Two sound waves, with ω = ±ω2.

To be specific, we let b̂ = êz , k = k⊥êx + k‖êz , ξ = ξx êx + ξy êy + ξz êz , and
k2 = k2

‖ + k2
⊥. Using this in Eq. (24.1), we find

x-component:
(
V 2

Ak2 + C2
Sk2

⊥
)
ξx + C2

Sk‖k⊥ξz = ω2ξx , (24.2)

y-component: V 2
Ak2

‖ξy = ω2ξy, (24.3)

z-component: C2
Sk‖k⊥ξx + C2

Sk2
‖ξz = ω2ξz. (24.4)

Notice that the y-component decouples from the x- and z-components. This imme-
diately gives the eigenvalue

Schnack, D.D.: Waves in a Uniform Medium: Arbitrary Angle of Propagation. Lect. Notes
Phys. 780, 147–152 (2009)
DOI 10.1007/978-3-642-00688-3 24 c© Springer-Verlag Berlin Heidelberg 2009
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ω2
0 = k2

‖ V 2
A (24.5)

or ω2
0 = k2V 2

A cos2 θ , and the eigenvector

ξ0 =
⎛
⎝

0
1
0

⎞
⎠ , (24.6)

i.e., ξx = ξz = 0, ξy = 1. This is the shear Alfvén wave found in Lecture 23. The
polarization is shown in Fig. 24.1.

Fig. 24.1 Displacement
vector (ξ), the propagation
vector (k̂), and the direction
of the magnetic field (b̂) for
transverse waves

The two remaining eigenvectors have ξx �= 0, ξz �= 0, and ξy = 0. The character-
istic equation for the coupled x- and z-components (24.2) and (24.3) is

(ω

k

)4 − (C2
S + V 2

A

) (ω

k

)2 + C2
SV 2

A cos2 θ = 0. (24.7)

The eigenvalues are

(ω

k

)2

1,2
= 1

2

(
C2

S + V 2
A

)
[

1 ±
√

1 − 4C2
SV 2

A cos2 θ(
C2

S + V 2
A

)
]

. (24.8)

Estimates of these solutions can be made for the interesting special case of C2
S/V 2

A =
Γβ/2 << 1 (strong magnetic field). Then to the lowest order in this parameter, the
eigenvalue corresponding to the (+) sign is

(ω

k

)2

1
≈ V 2

A

(
1 + C2

S

V 2
A

sin2 θ

)
. (24.9)
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For θ = π/2 (k perpendicular to b̂, or propagation across the field), this mode has

phase velocity ±
√

C2
S + V 2

A. This is just the MA wave we found in Lecture 23. The
polarization is shown in Fig. 24.2.

Fig. 24.2 Polarization of the
MA wave

For θ = 0 (propagation parallel to the field), the phase velocity is ±VA. Note,
however, that this is not the shear Alfvén wave. The eigenvector corresponding to
this frequency is found by substituting ω = ω1 = k‖VA (for θ = 0) into Eqs. (24.2)
and (24.4). The result is

(
C2

S − V 2
A

)
ξz = 0, so that ξx = 1, ξz = 0 is a non-trivial

solution. The eigenvector is

ξ1 =
⎛
⎝

1
0
0

⎞
⎠ . (24.10)

This is different from the shear Alfvén wave eigenvector given by Eq. (24.6). This
is sometimes called the pseudo-mode. The polarization is shown in Fig. 24.3.

Fig. 24.3 Polarization of the
“pseudo-mode”
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The eigenvalue corresponding to the (−) sign in Eq. (24.8) is, again in the strong
field limit,

(ω

k

)2

2
≈ C2

S cos2 θ (24.11)

or ω2 = ±Csk‖. The eigenvector is

ξ2 =
⎛
⎝

0
0
1

⎞
⎠ . (24.12)

This is called the slow branch of the MA wave. It becomes the sound wave for
parallel propagation (when θ = 0).

The results for wave propagation in a uniform, infinite medium in the strong field
limit are summarized in the phase velocity diagram, shown in Fig. 24.4.

Fig. 24.4 Phase velocity
surfaces for propagation at
arbitrary angle to the
magnetic field in a uniform
medium

The magnetic field points in the z-direction (upward in Fig. 24.4). The surfaces
shown in the figure represent the tip of the phase velocity vector Vp = (ω/k)k̂.

So far in this lecture we have allowed for compressible displacements. It turns
out that for incompressible displacements (∇ ·V = 0), which includes the important
case of shear Alfvén waves, it is possible to formulate the MHD equations in a
remarkably symmetric way, and to thereby illuminate the symmetries in the MHD
equations that are responsible for some of the waves we have just discussed.

To this end, we introduce the Elsässer variables

z± = V ± B√
μ0ρ0

. (24.13a,b)

Using the non-dimensional variables ρ → ρ0, t → t/τA, x → x/L , B → B/B0,
and p → p/ρV 2

A, where V 2
A = B2

0/μ0ρ0 is the square of the Afvén speed and
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τA = L/VA is the Alfvén time, the incompressible MHD equations (with constant
and uniform dissipation) are

∂V
∂t

+ V · ∇V = −∇ P + B · ∇B + 1

Sν

∇2V, (24.14)

∂B
∂t

+ V · ∇B = B · ∇V + 1

S
∇2B, (24.15)

and

∇ · V = 0, (24.16)

where P = p + 1
2 B2 is the total pressure, S is the Lundquist number, and Sν is the

viscous Lundquist number (see Lecture 11). The non-dimensional Elsässer variables
become

z± = V ± B, (24.17a,b)

so that V = (z+ + z−)/2 and B = (z+ − z−)/2.
If we first add Eqs. (24.14) and (24.15), then subtract them, and use

Eq. (24.17a,b), we find that the Elsässer variables satisfy the coupled equations

∂z±

∂t
+ z∓ ·∇z± = −∇ P + 1

2

(
1

Sν

+ 1

S

)
∇2z± + 1

2

(
1

Sν

− 1

S

)
∇2z∓, (24.18a,b)

along with

∇ · z± = 0. (24.18c,d)

Equations (24.18 a–d) are completely equivalent to the incompressible MHD
equations, Eqs. (24.14), (24.15) and (24.16). The coupled system is nonlinear. Note,
however, that each individual equation is linear in either z+ or z−. The total pres-
sure is determined by taking the divergence of either of Eq. (24.18a,b) and using
Eq. (24.18c,d). The result is a Poisson equation

∇2 P = −∇z∓ · ∇z±, (24.19a,b)

which can be solved once the boundary conditions on P are specified. [Equa-
tion (24.19a,b) are completely symmetric in z± and z∓ and represent the same
relationship, so it did not matter which of Eq. (24.18a,b) we used.]

So, how does this relate to waves, which are the subject of this lecture? If we lin-
earize Eq. (24.18a,b) about a state with a uniform magnetic field B0, the equilibrium
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Elsässer variables are z±
0 = ±B0. If we ignore dissipation, the perturbed Elsässer

variables satisfy

∂z±
1

∂t
∓ B0 · ∇z±

1 = −∇ P1 (24.20a,b)

and

∇2 P1 = ±B0 · ∇z±
1 . (24.20c)

The pressure clearly responds to the variation of z±
1 along the equilibrium field. If

pressure forces can be ignored (as in a low-β plasma, for example), the solution of
Eq. (24.20a,b) is z±

1 = z±
1 (x ∓ B0t), where z±

1 (x) is the initial condition. (Recall
that in our non-dimensional variables, B0 is equivalent to the Alfvén velocity.) The
solution z+(x − B0t) is a disturbance propagating without distortion in the +B0

direction, while the solution z−(x + B0t) is a disturbance propagating the −B0

direction. Both solutions propagate at the Alfvén velocity VA, so that z±
1 are the

right- and left-propagating shear Alfvén waves that we have just discussed.
The symmetry displayed by the Elsässer variables in incompressible MHD

reflects the symmetric roles played by the velocity and the magnetic field in the
propagation of shear Alfvén waves. Their fundamental nature can be further illus-
trated by writing the invariant quantities energy and cross-helicity as

E = 1

2

∫
dV
(
B2 + V 2

)

= 1

4

∫
dV
[(

z+)2 + (z−)2] (24.21)

and

HC =
∫

dV V · B

= 1

4

∫
dV
[(

z+)2 − (z−)2]. (24.22)

Because of this symmetry, the Elsässer variables play an important role in the theory
of incompressible MHD turbulence. We will see them again in Lecture 36.
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Lecture 25
The Calculus of Variations and the Ideal
MHD Energy Principle

All generalizations are dangerous, even this one.
Alexandre Dumas

In Lecture 22, we showed that the ideal MHD force operator is self-adjoint and
suggested that this allowed a formulation in which the stability of a system could
be determined without solving a differential equation. Going further requires a little
background in the calculus of variations. In the lecture we begin this discussion,1

and formulate the ideal MHD energy principle.
We have seen that an equilibrium state is an extremum of the potential energy of

the system; i.e., ∂W/∂ri = 0, where the ri represent symbolically all possible local
displacements of the system. Systems seek the lowest accessible state of potential
energy. Therefore, if the extremum of the energy is a local minimum, the equilibrium
is stable; if it is a local maximum, or an inflection point, the system is unstable
(because other, lower-energy states are accessible).

In ordinary calculus, the extrema of a function F(x) are determined by the roots
of F ′(x) = 0. These roots are numbers (values of x) at which F has a local maxi-
mum, minimum, or inflection point.

Now consider the expression

J {y} =
x1∫

x0

F
(
x, y, y′) dx, (25.1)

where y(x) is a function of x , y′ = dy/dx , x0, x1, y(x0), and y(x1) are known
numbers, and the functional form F(x, y, z) is given. The problem is to determine
the function y(x) that “extremizes” J {y}. The formalism for solving this problem is
called the calculus of variations. J {y} is called a functional of y, because its value
depends on the particular functional form y(x). Once the functional form y(x) is
known, J {y} is just a number.

1 The discussion of the calculus of variations follows R. Courant and D. Hilbert, Methods of Mathe-
matic Physics, Vol. 1, Interscience, New York (1953).

Schnack, D.D.: The Calculus of Variations and the Ideal MHD Energy Principle. Lect. Notes
Phys. 780, 153–158 (2009)
DOI 10.1007/978-3-642-00688-3 25 c© Springer-Verlag Berlin Heidelberg 2009
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Consider a function η(x) defined in the interval x0 ≤ x ≤ x , with η(x0) =
η(x1) = 0, and let ε be a small number, i.e., ε � 1. Then the function ȳ = y + εη

satisfies the same boundary conditions at x0 and x1 as y. If y(x) is the extremizing
function for J {y}, then for a local minimum Φ(ε) ≡ J {y + εη} > J {y}, and for a
local maximum Φ(ε) ≡ J {y + εη} < J {y}, except when ε = 0. (We will not deal
with inflection points.) The condition for an extremum is therefore dΦ/dε = 0 at
ε = 0.

More specifically,

Φ (ε) =
x1∫

x0

F
(
x, y + εη, y′ + εη′) dx . (25.2)

Then

dΦ

dε
=

x1∫

x0

[
∂F

∂ (y + εη)

d

dε
(y + εη) + ∂ F

∂ (y′ + εη′)
d

dε

(
y′ + εη′)

]
dx (25.3)

or, at ε = 0, the condition for an extremum

dΦ

dε

∣∣∣∣
e=0

=
x1∫

x0

[
η
∂F

∂y
+ η′ ∂F

∂y ′

]
dx = 0 (25.4)

must hold for all functions η(x)satisfying η(x1) = η(x2) = 0. Now

d

dx

(
η

∂F

∂y′

)
= η′ ∂F

∂y′ + η
d

dx

(
∂F

∂y′

)
. (25.5)

Therefore

0 =
x1∫

x0

[
η
∂F

∂y
+ d

dx

(
η

∂F

∂y ′

)
− η

d

dx

(
∂F

∂y ′

)]
dx

=
x1∫

x0

η

[
∂F

∂y
− d

dx

(
∂ F

∂y′

)]
dx + η

∂F

∂y′

∣∣∣∣
x1

x0

=
x1∫

x0

η

[
∂F

∂y
− d

dx

(
∂ F

∂y′

)]
dx . (25.6)

The integrated term vanishes because of the boundary conditions on η.
Equation (25.6) must hold for all admissible functions η(x). The fundamental

lemma of the calculus of variations is that this can only occur if
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∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0. (25.7)

This is called the Euler equation. Using the notation ∂ F/∂y′ ≡ Fy′ , it is written as

d

dx
Fy ′ − Fy = 0 (25.8)

or, expanding the first term,

y′′ Fy ′ y′ + y′Fy′ y + Fy ′x − Fy = 0. (25.9)

As seen explicitly from Eq. (25.9), the Euler equation is a second-order ordinary dif-
ferential equation for the function y(x), with boundary conditions y(x0) and y(x1),
which extremizes J {y}.

The function δy = εη is called the first variation of y. The first variation of J is
defined as

δ J = J {y + εη} − J {y}
= Φ (ε) − Φ (0)

≈ dΦ

dε

∣∣∣∣
ε=0

ε

or, from the equations preceding (25.6),

δ J =
x1∫

x0

δy

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
dx + δy

∂F

∂y′

∣∣∣∣
x1

x0

. (25.10)

The condition for an extremum is therefore δ J = 0, i.e., the first variation of J
must vanish. Note that, in general, the resulting expression depends explicitly on
the boundary conditions through the last term in Eq. (25.10). Boundary conditions
for which

δy
∂F

∂y′

∣∣∣∣
x1

x0

= 0 (25.11)

are called the natural boundary conditions for the problem δ J = 0. This means that
any solution of the variational problem

δ J = 0 =
x1∫

x0

δy

[
∂F

∂y
− d

dx

(
∂F

∂y ′

)]
dx

will automatically satisfy the natural boundary conditions.
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Therefore, a necessary condition for y(x) to be an extremum of J {y} is the van-
ishing of the first variation of J , δ J = 0, for all y + δy that satisfy the boundary
conditions.

Now, it is fair to ask how all this is related to ideal MHD. Recall that the ideal
MHD wave equation is

− ρ0ω
2ξ = F {ξ} . (25.12)

(The reason for the {. . .} notation is now apparent; F is a functional of ξ.) Dotting
Eq. (25.12) with ξ∗ and integrating over all space, we can write

ω2 {ξ} = δW
{
ξ∗, ξ

}

K
{
ξ∗, ξ

} , (25.13)

where

δW
{
ξ∗, ξ

} = −1

2

∫
ξ∗ · F {ξ} dV (25.14)

and

K
{
ξ∗, ξ

} = 1

2

∫
ξ∗ · ξdV . (25.15)

Therefore, ω2 is an integral functional of ξ.
We now take the first variation of Eq. (25.13). We will use the notation Δ instead

of δ for the variation to avoid confusion with the standard notation δW for the poten-
tial energy. This procedure is facilitated by writing Eq. (25.13) as

Kω2 = −1

2

∫
ξ∗ · F {ξ} dV . (25.16)

Taking the first variation,

ΔKω2 + KΔω2 = −1

2

∫ (
Δξ∗ · F {ξ} + ξ∗ · F {Δξ}) dV . (25.17)

Now

ΔK =
∫

ρ0Δξ∗ · ξdV (25.18)

and
∫

ξ∗ · F {Δξ} dV =
∫

Δξ∗ · F {ξ} dV , (25.19)
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since F is self-adjoint. Then,

Δω2 = − 1

K

∫
Δξ∗ · (F {ξ} + ρ0ω

2ξ
)

dV . (25.20)

Therefore, the condition for the vanishing of the first variation of ω2, Δω2 = 0, is
the same as requiring −ρ0ω

2ξ = F {ξ}, i.e., the ideal MHD wave equation is the
Euler equation for the variational problem Δω2 = 0. It is a consequence of F being
self-adjoint.

From Eqs. (25.13) and (25.14), we see that if there exists a displacement ξ (r)
for which δW < 0, then ω2 < 0 and the system is unstable. This leads to the ideal
MHD energy principle: if δW ≥ 0 for all allowable displacements, then the system
is stable. If δW < 0 for any displacement, the system is unstable. These conditions
can be shown to be both necessary and sufficient for determining the stability of an
ideal MHD system.

Through the energy principle, the determination of stability is reduced to finding
if there is a possible displacement for which δW < 0. This is a great simplification.
However, in order to apply it in specific situations, we need to extend the energy
principle to include contributions not only from the plasma, but also from the vac-
uum and the plasma/vacuum interface.

We can write the total potential energy of the perturbed system as2

δW = δWF + δWS + δWV, (25.21)

where δWF = −(1/2)
∫

ξ∗ · F {ξ} dV is the contribution from the plasma (fluid),
δWS is the contribution from the plasma/vacuum interface, and δWV is the contri-
bution from the vacuum. The explicit separation of δW as indicated in Eq. (25.21)
requires many integrations by parts. After “a tedious but straightforward calcula-
tion,” it turns out that

δWF = 1

2

∫

F

dV

[
|Q|2
μ0

− ξ∗
⊥ · (J × Q) + Γp0 |∇ · ξ|2 + (ξ⊥ · ∇ p0

)∇ · ξ∗
⊥

]
,

(25.22)

δWS = 1

2

∫

S

d S
∣∣n̂ · ξ⊥

∣∣2 n̂ · ∇
�

p + B2

2μ0

�

, (25.23)

and

δWV = 1

2

∫

V

dV
1

μ0

∣∣∣∇ × Â
∣∣∣
2
, (25.24)

2 See Jeffrey P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press, New York (1987).
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where F denotes the volume of the fluid, V denotes the volume of the vacuum,
and S denotes the surface of the plasma/vacuum interface. We note that the vacuum
contribution is always stabilizing, i.e., δWV > 0.

As we have seen, the displacement and perturbed fields are subject to the
conditions:

n̂ × Â = 0 (25.25)

for the vacuum solution, or

n̂ · ξ = 0 (25.26)

for the plasma solution, at the outer conducting boundary; and

n̂ × Â = − (n̂ · ξ) B̂0 (25.27)

and

− Γp0∇ · ξ + 1

μ0
(ξ · ∇B0 + B1) · B0 = 1

μ0

(
ξ · ∇B̂0 + B̂1

) · B̂0, (25.28)

at the plasma/vacuum interface.
Since we only need to show that there is some displacement that makes δW < 0

and satisfies the boundary conditions, the usual procedure is to guess a functional
form for ξ, called a trial function, substitute it into the energy principle, and compute
δW . (This procedure is not as random as it appears because of the Rayleigh–Ritz
technique, which will be discussed in Lecture 27.) Of course, the trial function must
satisfy the conditions of Eqs. (25.25, 25.26, 25.27, 25.28). It turns out that the pres-
sure balance boundary condition, Eq. (22.29), is difficult to enforce. However, it
can be shown that for every displacement ξ that does not satisfy pressure balance
on S but makes δW < 0, there is a “neighboring” displacement ξ̃ that satisfies
pressure balance whose energy δW̃ differs from δW by an arbitrarily small amount.
Therefore, it is not necessary to choose a trial function that satisfies the pressure
balance condition. If a system is unstable without satisfying pressure balance, it
will also be unstable if pressure balance is enforced.

This leads to what is called the extended energy principle: A necessary and
sufficient condition for instability is that one can find a ξ and an Â that satisfy
n̂ × Â = − (n̂ · ξ) B̂0 at the fluid/vacuum interface, and have either n̂ × Â = 0 or
n̂ · ξ = 0 at conducting boundaries, which make δW < 0.

The extended energy principle forms the basis for much of linear stability theory,
especially for fusion plasmas.
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Lecture 26
Examples of the Application
of the Energy Principle

To state a theorem and then show examples is literally to
teach backwards.

E. Kim Neubets

In this lecture, we will present several examples of the application of the energy prin-
ciple for determining the stability of a magneto-fluid system that illustrate the power
of the method. These examples are all based on the simple case of a fluid/vacuum
interface, as shown in Fig. 26.1.

Fig. 26.1 The interface between an unmagnetized fluid and a vacuum region with a magnetic field

In the fluid, the magnetic field vanishes, B0 = 0, and the pressure is constant. In
the vacuum, the magnetic field is finite, B̂0 �= 0, and the pressure vanishes.

The potential energy in the fluid is

δWF = 1

2

∫

F

dV Γp0 |∇ · ξ|2 ≥ 0, (26.1)

since all other terms vanish; according to the energy principle, this term is sta-
bilizing. However, δWF can be minimized by choosing a displacement for which
∇ · ξ = 0. We conclude that ∇ · ξ �= 0 is always stabilizing when ∇ p0 = 0.

Schnack, D.D.: Examples of the Application of the Energy Principle. Lect. Notes Phys. 780,
159–165 (2009)
DOI 10.1007/978-3-642-00688-3 26 c© Springer-Verlag Berlin Heidelberg 2009
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The jump in total pressure across the interface S is

�

p0 + B2
0

2μ0

�

= B̂2
0

2μ0
− p0. (26.2)

The first term on the right-hand side comes from the vacuum and the second term
comes from the fluid. Therefore

∇
�

p0 + B2
0

2μ0

�

= ∇
(

B̂2
0

2μ0

)
, (26.3)

since p0 = constant. Then, if ∇ · ξ = 0, the total potential energy of the system is

δW = δWS + δWV

= 1

2

∫

S

d S |n̂ · ξ|2 n̂ · ∇
(

B̂2
0

2μ0

)
+ 1

2μ0

∫

S

dV
∣∣∣∇ × Â

∣∣∣
2
. (26.4)

As noted in Lecture 25, the vacuum contribution is always stabilizing. Stability is
therefore determined by the sign of n̂ · ∇ B̂2

0 ≡ ∂ B̂2
0/∂n:

• If ∂B̂2
0/∂n > 0, then δW > 0 and the system is stable.

• If ∂B̂2
0/∂n < 0, then δW < 0 and the system can be unstable. The details depend

on the balance between δWS and δWV.

A vacuum magnetic field that decreases away from the fluid is destabilizing. Con-
versely, the magnetic field that increases away from the fluid is stabilizing. The
latter is an example of minimum-B stabilization.

Now consider the integrand in the surface term in more detail. A useful identity is

∇
(

1

2
B̂2

)
= B̂ · ∇B̂ + B̂ × (∇ × B̂

)
.

In the vacuum, μ0Ĵ = ∇ × B̂ = 0, so ∇ (B̂2/2
) = B̂ · ∇B̂. We want to compute ∇B̂

at the interface S. The geometry is shown in Fig. 26.2.
Point C is the center of curvature of the surface. The vector R points from the

surface to the center of curvature and âr = −R/R. In this geometry,

∇B̂ =
(

âr
∂

∂r
+ b̂

R

∂

∂θ

)
B̂b̂

= âr b̂
∂ B̂

∂r
+ b̂b̂

R

∂ B̂

∂θ
− b̂âr

R
B̂,
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Fig. 26.2 Details of the
curvature at the fluid–vacuum
interface

since ∂b̂/∂θ = −âr . Then

B̂ · ∇B̂ = B̂b̂ ·
(

âr b̂
∂ B̂

∂r
+ b̂b̂

R

∂ B̂

∂θ
− b̂âr

R
B̂

)

= b̂
R

B̂
∂ B̂

∂θ
− âr

B̂2

R
,

so that

1

2
n̂ · ∇ B̂2 = n̂ · (B̂ · ∇B̂

)

= n̂ · b̂
R

B̂
∂ B̂

∂θ
− n̂ · âr

B̂2

R
. (26.5)

But n̂ · b̂ = 0 because B̂ lies in the surface S, and n̂ · âr = −n̂ · R/R. Therefore

1

2
n̂ · ∇ B̂2 = (n̂ · R)

B̂2

R2
. (26.6a)

The surface energy δWS is then

δWS = 1

4μ0

∫

S

d S |n̂ · ξ|2 (n̂ · R)
B̂2

R2
, (26.6b)

so that stability may be determined by the sign of n̂ · R:

• n̂ · R > 0 is stabilizing: This is called (creatively!) good curvature; the center of
curvature lies inside the vacuum, as shown in Fig. 26.3.
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Fig. 26.3 Illustration of a
good curvature

• n̂ · R < 0 is destabilizing: This is called bad curvature; the center of curvature
lies inside the fluid, as shown in Fig. 26.4.

Fig. 26.4 Illustration of bad
curvature

In order to find the total perturbed potential energy, we need to determine δWV.
This requires that we consider the effect of displacements of the surface S when the
equilibrium surface is flat (i.e., R → ∞). We work in a Cartesian coordinate system
with x normal to the surface, and y and z in the plane of the surface. The magnetic
field in the vacuum is in the z-direction. As before, the field vanishes in the fluid and
the pressure is constant. The configuration is shown in Fig. 26.5.

Fig. 26.5 An expanded view
of the fluid–vacuum interface

In this case, n̂ = êx , B̂0 = B̂0êz , and n̂ · ξ = ξx . We also assume that the
system extends infinitely far in the y- and z-directions, so that on S we can write
ξx = ξ0ei(ky y+kz z). This is the vertical displacement of the surface.

In the vacuum J = 0, so the perturbed vector potential in the vacuum satisfies
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∇ × ∇ × Â = 0. (26.7)

With Â = Ãeik·r, k = kx êx + ky êy + kz êz , ∇ → ik, and using vector identities, this
becomes

k2Ã − k
(
k · Ã

) = 0. (26.8)

The perturbed vacuum field is B̂1 = B̃eik·r, where B̃ = ik × Ã.
On S (x = 0), Ã must satisfy the boundary condition

n̂ × Ã = − (n̂ · ξ) B̂0. (26.9)

In light of the above discussion, this becomes

Ãz = 0 (26.10)

and

Ãy = −ξx B̂0S, (26.11)

where B̂0S is the equilibrium vacuum magnetic at the surface. Since B̃ = ik × Ã,
the perturbed magnetic field only depends on the component of Ã that is parallel to
k. We are therefore free to set k · Ã = 0. From Eq. (26.10), this requires

Ãx = −ky

kx
Ãy, (26.12)

and Eq. (26.8) becomes

k2Ã = 0. (26.13)

A non-trivial Ã therefore requires k2 = 0 or kx = ±iκ , where κ2 = k2
y + k2

z . After
some algebra, the solution for the perturbed vacuum field that is bounded at infinity
is found to be

B̂1 = B̃e−κx ei(ky y+kz z), (26.14)

where

B̃ = − i Ãy

kx

(
êx kzkx + êykzky − êzκ

2
)
, (26.15)

where kx = ±iκ .
The magnetic energy density in the perturbed vacuum field is therefore, again

after some algebra,
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wV = 1

2μ0
B̂1 · B̂∗

1e−2κx

= 1

μ0

∣∣ Ãy

∣∣2 k2
z e−2κx

or, using Eq. (26.11),

wV = 1

μ0
k2

z ξ
2
x B̂2

0se−2κx . (26.16)

The vacuum contribution to the potential energy is therefore

δWV =
∫

V

wVdV

= 1

μ0

∫∫
k2

z ξ
2
x B̂2

0sdydz

∞∫

0

dxe−2κx

= 1

2μ0

∫

S

k2
z ξ

2
x B̂2

0s

κ
d S. (26.17)

If ∇ · ξ = 0, δWF = 0 [see Eq. (26.1)], and the total perturbed potential energy of
the system is

δW = δWS + δWV

= 1

4μ0

∫

S

d Sξ 2
x

∂ B̂2
0

∂x
+ 1

2μ0

∫

S

k2
z ξ

2
x B̂2

0s

κ
d S. (26.18)

Therefore, instability occurs if ∂ B̂2
0/∂x < 0 and k2

z /κ → 0. The latter condition
is equivalent to kz = 0, i.e., k · B̂0S = 0. This means that, on S, the wavefronts of
the perturbation are parallel to the equilibrium magnetic field. These perturbations
do not bend the field lines. The displacements to the surface can slip through the
magnetic field without increasing the magnetic energy. The situation is sketched in
Fig. 26.6.

If ∂ B̂2
0/∂x < 0, the upward moving tip of the perturbation enters a region where

B̂2
0/2μ0 < p0. The fluid in the tip thus expands and feels a “restoring force” in the

direction of ξx . Instability ensues.
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Fig. 26.6 Displacement of the surface seen in the plane perpendicular to the direction of the mag-
netic field, and the variation of the vacuum magnetic pressure with distance from the unperturbed
surface

While the conclusions drawn here regarding stability (or lack thereof) derive
from the simple problem of an unmagnetized, uniform pressure plasma in contact
with a unidirectional vacuum magnetic field, the concepts of incompressible pertur-
bations, minimum-B, good and bad curvature, and field-line bending are sufficiently
general that they are applicable in other more complex situations.
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Lecture 27
The Rayleigh–Ritz Technique for Estimating
Eigenvalues

It is the mark of an educated mind to rest satisfied with the
degree of precision which the nature of the subject admits and
not to seek exactness where only an approximation is possible.

Aristotle

The energy principle provides a powerful technique for determining the stability or
instability of a magneto-fluid system without resorting to the solution of a differ-
ential equation. Instead, one makes an educated guess at the minimizing displace-
ment and then examines the sign of the resulting eigenvalue. This approach is made
even more powerful, and put on a solid theoretical footing, by application of the
Rayleigh–Ritz technique for estimating the eigenvalues of a self-adjoint operator.
This is briefly discussed in this lecture.1

Let ξi , i = 0, 1, 2, . . . be the eigenvectors of the ideal MHD force operator F,
with eigenvalues ω2

i , i = 0, 1, 2, . . . ordered such that ω2
0 < ω2

1 < ω2
2 < · · · . If

ω2
0 < 0 the system is unstable. If we know the eigenvector ξ0, we can compute the

perturbed potential and kinetic energies, δW0 and K0, and thereby determine the
eigenvalue ω2

0 = δW/K . However, finding ξ0 requires solving the ideal MHD wave
equation, which may be quite tedious, difficult, or otherwise unpleasant.

Instead, we take a guess at ξ0, say

ξ︸︷︷︸
Guessed eigenvector

= ξ0︸︷︷︸
Exact eigenvector

+ δξ︸︷︷︸
Error

. (27.1)

Now, by definition, the error δξ is orthogonal to (i.e., has no projection along) ξ0 (it
contains all the parts of ξ that differ from ξ0), so that we can write

ξ = ξ0 +
∞∑

i=1

aiξi , (27.2)

1 We have generalized the discussion found in George Arfkin, Mathematical Methods for Physi-
cists, 2nd Ed., Academic Press, New York (1970).

Schnack, D.D.: The Rayleigh–Ritz Technique for Estimating Eigenvalues. Lect. Notes Phys. 780,
167–170 (2009)
DOI 10.1007/978-3-642-00688-3 27 c© Springer-Verlag Berlin Heidelberg 2009
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where i = 0 has been excluded from the summation. Then an estimate of the eigen-
value ω2

0 is

ω2 = δW
{
ξ∗, ξ

}

K
{
ξ∗, ξ

}

= δW
{
ξ∗

0 + δξ∗, ξ0 + δξ
}

K
{
ξ∗

0 + δξ∗, ξ0 + δξ
} , (27.3)

where we explicitly display the complex conjugate in the arguments.
The numerator in Eq. (27.3) is evaluated by expanding δW . We have

δW
{
ξ∗

0 + δξ∗, ξ0 + δξ
} = δW

{
ξ∗

0, ξ0

}+ δW
{
ξ∗

0, δξ
}

+ δW
{
δξ∗, ξ0

}+ δW
{
δξ∗, δξ

}
, (27.4)

since F {ξ} is a linear functional. We need to evaluate the individual terms on the
right-hand side of this equation. Since F is self-adjoint, we know that δW

{
ξ∗

0, δξ
} =

δW
{
δξ∗, ξ0

}
. Further,

δW
{
δξ∗, ξ0

} = −1

2

∫ ( N∑
i=1

aiξi

)∗
· F
{
ξ0

}
dV = 0, (27.5)

because the eigenvectors are orthogonal and i = 0 is excluded from the sum. Also,

K
{
ξ∗

i , ξ j

} = 1

2
ρ0

∫
ξ∗

i · ξ j dV = 1

2
ρ0δi j , (27.6)

so that we can write

δW
{
ξ∗

i , ξ j

} = ω2 K
{
ξ∗

i , ξ j

} = 1

2
ρ0ω

2
i δi j . (27.7)

Therefore

δW
{
δξ∗, δξ

} =
∞∑

i=1

∞∑
j=1

a∗
i a jδW

{
ξ∗

i , ξ j

}

=
∞∑

i=1

∞∑
j=1

a∗
i a j

1

2
ρ0ω

2
jδi j

= 1

2
ρ0

∞∑
i=1

|ai |2 ω2
i .

The numerator of Eq. (27.3) is then
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δW
{
ξ∗

0 + δξ∗, ξ0 + δξ
} = δW

{
ξ∗

0, ξ0

}+ δW
{
δξ∗, δξ

}

= δW0 + 1

2
ρ0

∞∑
i=1

|ai |2 ω2
i . (27.8)

Similarly, the kinetic energy in the denominator of Eq. (27.3) is

K
{
ξ∗

0 + δξ∗, ξ0 + δξ
} = K

{
ξ∗

0, ξ0

}+ K
{
δξ∗, δξ

}

= K0 + 1

2
ρ0

∞∑
i=1

|ai |2. (27.9)

Then, since by Eq. (27.6), K0 = ρ0/2, Eq. (27.3) becomes

ω2 =
δW0/K0 +

∞∑
i=1

|ai |2 ω2
i

1 +
∞∑

i=1
|ai |2

. (27.10)

If we now assume that we have made a decent guess at ξ0, we expect the error
term in Eq. (27.10) to be small (i.e.,

∑
i |ai |2 � 1) and the denominator can

be expanded by the binomial theorem. Then Eq. (27.10) can be written approxi-
mately as

ω2 ≈ δW0

K0
+

∞∑
i=1

|ai |2 ω2
i − δW0

K0

∞∑
i=1

|ai |2

or

ω2 ≈ ω2
0 +

∞∑
i=1

|ai |2
(
ω2

i − ω2
0

)
, (27.11)

where ω2
0 = δW0/K0 is the actual eigenvalue associated with ξ0. The summation in

Eq. (27.11) is the error in our estimate of this eigenvalue.
There are two important things to note about Eq. (27.11):

1. Even though the error δξ in our estimate of the eigenvector is O(ai ) [see
Eq. (27.2)], the error in the estimate of the eigenvalue is O(|ai |2) � O(ai ).
Therefore, the error in the eigenvalue is much less than the error in the eigen-
vector. A 10% error in the estimate of ξ0 results in only a 1% error in the estimate
of ω2. Our guess does not have to be very good at all; even relatively poor guesses
at ξ0 yield relatively good estimates of ω2.

2. Since, by definition, ω2
i > ω2

0, the error in the estimate of ω2 is always positive
[see Eq. (27.11)]. Successively improved guesses always converge from above.
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Therefore, if we find an estimate ω2 < 0, then we can be assured that ω2
0 < 0

also. This provides reliable conclusions about instability.

The procedure outlined above can be improved by writing the guess at ξ0 in
terms of a number of parameters and then minimizing the resulting ω2 with respect
to these parameters. That is, we write our guess as ξ = ξ (A, B, C, D, . . .) and
compute δW

{
ξ∗, ξ

}
and K

{
ξ∗, ξ

}
. This yields an estimated eigenvalue ω2 =

ω2 (A, B, C, D, . . .). We then differentiate the expression for ω2 with respect to
the parameters A, B, C, D, . . . and set the derivatives to zero, i.e., ∂ω2/∂ A = 0,
∂ω2/∂ B = 0, ∂ω2/∂C = 0, ∂ω2/∂ D = 0, etc. This yields a set of simultane-
ous equations that can be solved for the parameters A, B, C, D, . . . that result in a
stationary (and, we hope, minimum) value of ω2. This is called the Rayleigh–Ritz
technique. It forms the basis for many important computational algorithms used to
study the stability of magneto-fluid systems (called “δW codes”).



www.manaraa.com

Lecture 28
The Gravitational Interchange Mode or g-Mode

We can lick gravity, but sometimes the paperwork is
overwhelming.

Wernher Von Braun

We now consider the case where the magneto-fluid system is subject to a gravita-
tional force Fg = ρg, where g is a constant gravitational acceleration vector. In a
system with straight field lines, the equilibrium condition is

∇
(

p + B2

2μ0

)
= ρg. (28.1)

Recall that in a system with curved field lines, but no gravity, the equilibrium con-
dition is

∇
(

p + B2

2μ0

)
= B2

μ0
κ, (28.2)

where κ = b̂ · ∇b̂ is the field-line curvature. Therefore, by using gravity as a
proxy force, it is possible to study the stability properties of systems with curved
field lines while using Cartesian geometry with straight field lines. This is a great
simplification. This accounts for both the importance of the gravitational problem
in MHD and the richness of its solutions. The study of the stability properties of the
equilibrium given by Eq. (28.1), the so-called g-mode, or gravitational interchange
problem, is one of the most important problems in MHD.

Since Fg = ρg, the gravitational force will make an additional contribution to
the perturbed potential energy of

δWg = −1

2

∫
dV ξ∗ · Fg {ξ}. (28.3)

The perturbed gravitational force is Fg = ρ1g. We have previously shown that the
perturbed density is related to the displacement by

Schnack, D.D.: The Gravitational Interchange Mode or g-Mode. Lect. Notes Phys. 780,
171–177 (2009)
DOI 10.1007/978-3-642-00688-3 28 c© Springer-Verlag Berlin Heidelberg 2009
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ρ1 = −ξ · ∇ρ0 − ρ0∇ · ξ, (28.4)

so that

δWg = 1

2

∫
dV
(
ξ∗ · g

)
(ξ · ∇ρ0 + ρ0∇ · ξ). (28.5)

The full expression for δW including gravity is

δW =1

2

∫
dV

{
|Q|2
μ0

− ξ∗ · J × Q + Γp0 |∇ · ξ|2 + (ξ∗ · ∇ p0
)∇ · ξ

+ (
ξ∗ · g

)
(ξ · ∇ρ0 + ρ0∇ · ξ)

}
, (28.6)

where Q = ∇ × (ξ × B).
We now consider the equilibrium of Eq. (28.1) in Cartesian geometry. Solid walls

are at x = ±L , B = B(x)êy , and g = gêx . The current is

Jz = 1

μ0

d B

dx
, (28.7)

and the force balance condition, Eq. (28.1), is

dp0

dx
+ 1

2μ0

d B2

dx
= ρ0g. (28.8)

The configuration is shown in Fig. 28.1.

Fig. 28.1 Geometry for the
gravitational interchange
mode

We now specialize to the case ξ = ξ (x, z), so that the displacement is indepen-
dent of z. Note that now ξ is real, so ξ∗ = ξ. We substitute this ansatz into Eq. (28.6).
After considerable algebra, the result is
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δW = 1

2

∫
dV

[(
B2

μ0
+ Γp0

)
(∇ · ξ)2 + 2ρ0gξx∇ · ξ + g

dρ0

dx
ξ2

x

]
. (28.9)

First, we note that the system is stable (δW > 0) if g = 0.
Second, if ∇ · ξ = 0, stability requires

∫
g

dρ0

dx
ξ 2

x > 0. (28.10a)

Suppose that gdρ0/dx < 0 at a single point x0. Then we could choose a trial func-
tion ξx that is zero everywhere except in a very small region around x0, as shown in
Fig. 28.2.

Fig. 28.2 Possible trial
function for the gravitational
interchange problem

Then δW < 0 and the system is unstable. But the point x0 is arbitrary, so
the condition for stability gdρ0/dx > 0 must hold pointwise (i.e., at all points
in −L < x < L), for if it is not satisfied at a single point, then δW < 0 and
the system is unstable. This is called the Rayleigh–Taylor instability. Stable and
unstable situations for incompressible perturbations are sketched in Fig. 28.3.

Fig. 28.3 Stable and unstable
density profiles for the
incompressible case

Third, ∇ · ξ �= 0 is not always stabilizing when ∇ p0 �= 0; incompressible dis-
placements are not always the most unstable. In this case, if ξx∇ · ξ > 0, then the
system is unstable if g < 0; if ξx∇· ξ < 0, then the system is unstable if g > 0.
Note that these conclusions are true even if dρ0/dx = 0. Consider the total pressure
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profile shown in the left of Fig. 28.4. Let the fluid element at x be displaced down-
ward to the new position x ′, as shown in the figure on the right of Fig. 28.4. The
pressure at x ′ is greater than the pressure at x . During the displacement, the fluid
element will therefore be compressed (∇·ξ < 0), its density will increase, and it will
find itself heavier than its surroundings. It will continue to fall. Similarly, upwardly
displaced elements will expand, find themselves lighter than their surroundings, and
continue to climb. This is called buoyancy. It is an instability that depends on com-
pressibility. It is often called the Parker instability.

In the g-mode, the system lowers its energy by interchanging fluid elements.
Instabilities of this type are called, not surprisingly, interchange modes. The g-mode
is often described as the instability of a heavier fluid being supported by a lighter
one. This is the case when the fluid is incompressible and is its primary manifesta-
tion in magnetic confinement devices, such as tokamaks, where incompressibility is
enforced by a strong magnetic field (as in reduced MHD). However, we have seen
that, when the fluid is compressible, instability can occur even when there is no den-
sity gradient. This is often the primary manifestation of this mode in astrophysical
settings.

Fig. 28.4 Left: Total pressure
profile and gravity. Right:
Displacement of a fluid
element from x to x ′

We now return to the energy principle, Eq. (28.9). Notice that the integrand is a
quadratic form in the independent variables ∇ · ξ and ξx , i.e., it can be written as

2∑
i, j=1

xi aijx j =
(

B2

μ0
+ Γp0

)
(∇ · ξ)2 + ρ0g (∇ · ξ) ξx

+ ρ0gξx (∇ · ξ) + g
dρ0

dx
ξ2

x , (28.10b)
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where x1 = ∇ · ξ and x2 = ξx . If this is positive, the system is stable. There is a
theorem stating that a necessary and sufficient condition for a quadratic form to be
positive, i.e.,

Q = xT · A · x > 0, (28.11)

is that the determinant of all the principal minors of A be greater than zero. That is,

det A1 = a11 > 0,

det A2 =
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ > 0,

det A3 =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
> 0,

etc., must hold simultaneously. Equation (28.10) is a 2 × 2 system, with

a11 = B2

μ0
+ Γp0, a12 = ρ0g,

a21 = ρ0g, a22 = g dρ0

dx .

The first principal determinant is

a11 = B2

μ0
+ Γp0 > 0,

which is always satisfied. Requiring the second principal determinant (in this case,
the determinant of ai j ) to be positive yields

(
B2

μ0
+ Γp

)(
g

dρ0

dx

)
− (ρ0g)2 > 0

or

g
dρ0

dx
>

g2

C2
> 0, (28.12)

where C2 = C2
S + V 2

A. Equation (28.12) is the condition for stability of the g-mode,
including compressibility. As concluded in the discussion following Eq. (28.10), it
must hold at every point in x . If it is violated at any point, the system is unstable.

There are two points:

1. The system is unstable if g and dρ0/dx have opposite signs. This is the same
conclusion as in the incompressible case (the Rayleigh–Taylor instability).
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2. Even if g and dρ0/dx have the same sign, the system will be unstable unless
g (dρ0/dx) > ρ0g2/C2. Because of compressibility, instability can occur even
when a heavy fluid supports a light fluid. The drive for the Parker instability
can overcome the stabilization of the Rayleigh–Taylor instability (which occurs
because of the alignment of the density gradient with gravity). This situation is
sketched in Fig. 28.5.

Fig. 28.5 Stability diagram
for the compressible
gravitational interchange
mode (the Parker instability)

We conclude by estimating the growth rate with the Rayleigh–Ritz technique. For
simplicity, we only consider the incompressible case, ∇ · ξ = 0, i.e., the Rayleigh–
Taylor instability. (Yes, it is the same Lord Rayleigh.) We assume an exponential
density profile ρ0 = ρ̄ex/Ln . The perturbed potential energy is

δW = 1

2

∫
dV g

dρ0

dx
gξ 2

x . (28.13)

We choose the trial function

ξx = ξ0eikz cos
πx

2L
, (28.14)

which is periodic in z and satisfies the boundary conditions ξx (−L , z) = ξx (−L , z) = 0,
as required. Since ∇ · ξ = 0, the z-component of the displacement satisfies
∂ξz/∂z = −∂ξx/∂x . Using Eq. (28.14) and integrating,

ξz = − iπξ0

2kL
eikz sin

πx

2L
. (28.15)

The potential energy is

δW = ρ0g

2Ln
ξ 2

0

L∫

−L

cos2 πx

2L
dx

= πρ0g

4Ln
ξ 2

0 , (28.16)
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and the perturbed kinetic energy is

K = 1

2
ρ0

L∫

−L

(
ξ 2

x + ξ 2
z

)
dx

= πρ0

4
ξ 2

0

(
1 + π2

4k2 L2

)
. (28.17)

The estimated growth rate is

ω2 = δW

K
,

= g/Ln

1 + π2/4k2 L2
. (28.18)

The system is unstable if g/Ln < 0, as expected. For long wavelengths, kL << 1,
we have

γ 2 ≈ 4

π2
(kL)2 , (28.19)

and for short wavelengths, kL >> 1,

γ 2 ≈ g/Ln, (28.20)

Fig. 28.6 Growth rate versus
normalized wave number for
the incompressible
gravitational interchange
mode

where γ 2 = −ω2 is the square of the growth rate. When the wavelength is long, the
mode can “feel” the presence of the conducting wall and the growth rate is reduced.
However, when the wavelength is short, the mode can evolve as though the wall
were absent, and the growth rate is independent of k. The full dependence of the
growth rate on wave number is given by Eq. (18.9). This is sketched in Fig. 28.6.
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Lecture 29
Comments on the Energy Principle and the
Minimizing Eigenfunction1

The devil is in the details.
Anonymous

In this lecture, we make some comments on the MHD energy principle and the
process of minimization. These remarks are quite general. Some of them require a
considerable amount of vector algebra and integration by parts. Most of these details
have been omitted for clarity of presentation.

After a formidable calculation, the ideal MHD energy principle (excluding grav-
ity) can be written as

δW =1

2

∫
dV

{∣∣Q2
⊥
∣∣

μ0
+ B2

μ0

∣∣∇ · ξ⊥ + 2ξ⊥ · κ
∣∣2 + Γp0 |∇ · ξ|2

−2
(
ξ⊥ · ∇ p0

) (
κ · ∇ξ∗

⊥
)− J‖

(
ξ∗
⊥ × b̂

) · Q⊥
}
, (29.1)

where

Q = Q⊥ + Q‖b̂, (29.2)

Q‖ = −B
(∇ · ξ⊥ + 2ξ⊥ · κ

)+ μ0

B
ξ⊥ · ∇ p0, (29.3)

J = J⊥ + J‖b̂, (29.4)

ξ = ξ⊥ + ξ‖b̂, (29.5)

and

κ = b̂ · ∇b̂. (29.6)

Instability occurs if δW < 0.

1 For the gory details, see Jeffrey P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press,
New York (1987).

Schnack, D.D.: Comments on the Energy Principle and the Minimizing Eigenfunction. Lect.
Notes Phys. 780, 179–182 (2009)
DOI 10.1007/978-3-642-00688-3 29 c© Springer-Verlag Berlin Heidelberg 2009
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We remark on the terms in Eq. (29.1) as follows:

1.
∣∣Q2

⊥
∣∣ /μ0 > 0 is stabilizing. This is the energy required to bend the field lines. It

gives rise to the shear Alfvén wave.
2. B2

∣∣∇ · ξ⊥ + 2ξ⊥ · κ
∣∣2 /μ0 > 0 is stabilizing. It is the energy required to com-

press the magnetic field. It gives rise to magneto-acoustic waves.
3. Γp0 |∇ · ξ|2>0 is stabilizing. It is the energy required to compress the fluid. It

gives rise to sound waves.
4. −2

(
ξ⊥ · ∇ p0

) (
κ · ∇ξ∗

⊥
)

can be either stabilizing or destabilizing. When nega-
tive, it gives rise to pressure-driven instabilities. Since ∇ p = J⊥ × B, it contains
the effects of perpendicular current.

5. −J‖
(
ξ∗
⊥ × b̂

)·Q⊥ can be either stabilizing or destabilizing. When negative, it can
give rise to current-driven instabilities or, more accurately, instabilities driven by
the parallel current.

Note that ξ‖ enters δW only through the term ∇ · ξ. It is therefore possible to
minimize δW once and for all with respect to ξ‖. We will then be left to deal only
with δW

{
ξ⊥, ξ⊥

}
. This minimization is carried out by letting ξ‖ → ξ‖ + Δξ‖ in

Eq. (29.1), where Δξ‖ is the variation of ξ . (The Δ notation is used to avoid confu-
sion with δW .) Assuming that b̂ · n̂ = 0 on the boundary, and after much algebra,
we finally arrive at an expression for the variation of δW as

Δ (δW ) = 0 = −Re
∫

dV Δξ ∗
‖ b̂ · ∇ (Γp0∇ · ξ). (29.7)

Since this must hold for arbitrary Δξ‖, we must require

b̂ · ∇ (Γp0∇ · ξ) = 0. (29.8)

Any ξ that satisfies Eq. (29.8) minimizes δW with respect to ξ‖. Now

b̂ · ∇ (p0∇ · ξ) = p0b̂ · ∇ (∇ · ξ) + ∇ · ξb̂ · ∇ p0. (29.9)

But in equilibrium, b̂ · ∇ p0 = 0, so that Eq. (29.8) becomes

b̂ · ∇ (∇ · ξ) = 0. (29.10)

This is the final form of the minimizing condition.
Equation (29.10) has a form similar to the homogeneous algebraic equation

Ax = 0. We know that if A �= 0, then the only solution is x = 0. The condi-
tion A �= 0 is equivalent to saying that A is invertible, i.e., A−1 ≡ 1/A exists.
Conversely, if A = 0, A is not invertible and solutions x �= 0 are possible.

By analogy, the properties of the constraint (29.10) depend on whether the oper-
ator b̂ · ∇ is invertible or not. Suppose it is invertible everywhere. Then the solution
of Eq. (29.10) is ∇ · ξ = 0; this is the minimizing condition. In light of Eq. (29.5),
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∇ · (ξ⊥ + ξ‖b̂
) = 0. (29.11)

With b̂ = B/B and ∇ · B = 0, this can be written as

B · ∇
(

ξ‖
B

)
= −∇ · ξ⊥. (29.12)

Choosing ξ‖ to satisfy Eq. (29.12) will minimize δW if b̂·∇ is invertible everywhere.
Now suppose that b̂ ·∇ is invertible everywhere except at some isolated locations

where b̂ · ∇ = 0. Then for ∇ · ξ⊥ to remain finite, ξ‖/B must go to infinity at these
locations, i.e., ξ‖ is singular there. This is not an acceptable trial function. Let the
location of the singularity be x0, and let

ξ = ξ̃ + εη, (29.13)

where η(x) is zero everywhere except in a small region of size ε around x = x0,
and ε � 1. We assume that ξ is the “real” minimizing trial function that satisfies
Eq. (29.12) (i.e., has ∇ · ξ = 0 everywhere and ξ‖ singular at x = x0), and that ξ̃ is
some “neighboring” trial function (with ∇ · ξ̃ �= 0 and ξ‖ well behaved at x = x0).
Then ∇ · ξ = ∇ · ξ̃ + ε∇ · η, so that ∇ · ξ and ∇ · ξ̃ can be chosen to be equal to each
other (and therefore zero) away from x0, and differ by an arbitrarily small amount
near x0. Then

δW {ξ, ξ} = δW
{
ξ̃ + εη, ξ̃ + εη

}

= δW̃ + O (ε) ,

where δW̃ = δW
{
ξ̃, ξ̃
}

is a “neighboring” δW computed with a trial function that
has ξ‖ well behaved at x0. Now suppose δW̃ < 0, i.e., we find an instability with
the trial function ξ̃. Then we can choose ε so small that δW (the “real” δW ) is also
negative. We therefore conclude that for every well-behaved trial function ξ̃ that
makes δW̃ < 0, there is a “neighboring” trial function ξ (with ξ‖ singular at x0)
whose potential energy δW differs from δW̃ by an arbitrarily small amount, and
which satisfies ∇ · ξ = 0.

The procedure when b̂ · ∇ �= 0 at x = x0 is as follows:

1. Choose a trial function ξ̃ that is well behaved at x0.
2. Compute δW̃ .
3. If δW̃ < 0, the system is unstable.
4. It will also be unstable with the singular trial function ξ.

Therefore, any conclusions drawn about instability with a non-singular trial func-
tion will be valid.

Now suppose that b̂ · ∇ = 0 everywhere. This is the case for the g-mode (with
B = B(x)êy and ∇ = êx∂x + êz∂z) and for axially symmetric perturbations to a pure
Z-pinch (with B = Bθ (r )êθ and ∇ = êr ∂r + êz∂z). Then ∇ · ξ = ∇ · ξ⊥, i.e., ξ‖
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does not appear in δW and the term Γp0

∣∣∇ · ξ⊥
∣∣2 must be retained (as was seen in

the stability analysis of the g-mode). In this case, ∇ · ξ = 0 is not the most unstable
displacement.

A further special case occurs if the field lines are all closed. Then the periodicity
constraint ξ‖(l) = ξ‖(l + L), where L is the length of a field line and l is the distance
along a field line, must be imposed on each field line. It can be shown that this
implies the condition

∫
Γp0 |∇ · ξ|2 dV =

∫
Γp0

∣∣〈∇ · ξ⊥
〉∣∣2 dV ,

where

〈 f 〉 ≡
∫

dl
B f∫
dl
B

denotes the average taken along a field line. Again, the term Γp0

∣∣∇ · ξ⊥
∣∣2 must be

included in the analysis.
We remark on the significance of the condition b̂ · ∇ = 0, which occurs at

locations x = x0. In the analysis of axisymmetric equilibria, the x0 correspond
to flux surfaces. These special surfaces are called singular surfaces. If we use the
analogy ∇ → ik, then the singularity condition is k · B = 0, i.e., on these surfaces
the wavefronts of the perturbation are aligned with the magnetic field, so that the
perturbation does not bend the field lines. We have already seen in Lecture 26 that
this is destabilizing. Singular surfaces play a special role in the stability analysis of
axisymmetric systems.

We will now consider several examples of the role played by the issues raised in
this lecture in determining the stability properties of some specific equilibria.
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Lecture 30
Examples of the Application of the Energy
Principle to Cylindrical Equilibria1

Few things are harder to put up with than the annoyance of
a good example.

Mark Twain

We now use the energy principle to analyze the stability properties of the cylindrical
θ -pinch, the Z-pinch, and the general screw pinch. Since these equilibria depend
only on the radial coordinate r , are periodic in the θ - and z-coordinates, and the
fields are independent of the periodic coordinates, the displacement can be written
as in terms of the Fourier decomposition

ξ (r) = ξ (r ) ei(mθ+kz). (30.1)

Since the equilibria have no radial component of the magnetic field,

B · ∇ = im

r
Bθ + ik Bz . (30.2)

In Eq. (30.1), m is an integer in the range −∞ ≤ m ≤ ∞. It is called the poloidal
mode number. If the system is infinitely long, k is a continuous variable. However,
it is quantized if the cylinder has finite length. For example, if a torus with circular
cross-section a and major radius R (has aspect ratio R/a) is cut and straightened
into a cylinder of length L = 2π R, then periodicity requires k = n/R, where n
is an integer in the range −∞ ≤ n ≤ ∞. It is called the axial, or toroidal, mode
number.

Typical displacements of the plasma column for different values of m and k are
shown in Figs. 30.1, 30.2, and 30.3.

The mode with m = 0, k �= 0 is colorfully called the “sausage mode.” Since
m = 0, the displacement is azimuthally symmetric (i.e., independent of θ ). The
mode with m = 1, k = 0 is just a shift of the column with respect to the axis. The
mode with m = 1, k �= 0 is called a “kink mode.” It distorts the column helically.

1 Again, we closely follow Jeffrey P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press,
New York (1987).

Schnack, D.D.: Examples of the Application of the Energy Principle to Cylindrical Equilibria.
Lect. Notes Phys. 780, 183–192 (2009)
DOI 10.1007/978-3-642-00688-3 30 c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 30.1 The sausage mode

Fig. 30.2 The shift mode

Fig. 30.3 The kink mode

We now consider the three cylindrical equilibria.
The θ -pinch

The equilibrium for the θ -pinch is

p (r ) + B2
z

2μ0
= B2

0

2μ0
, (30.3)

where B0 is the magnetic field strength outside the fluid. It is produced externally.
Since Bθ = 0, Eq. (30.2) becomes B · ∇ = ik Bz , so that this operator can be

inverted as long as k �= 0. In that case the minimizing condition for δW is ∇·ξ = 0 or

1

r

d

dr
(rξr ) + im

r
ξθ + ikξz = 0. (30.4)



www.manaraa.com

30 Examples of the Application of the Energy Principle to Cylindrical Equilibria 185

We can therefore use Eq. (30.4) to eliminate ξ‖ = ξz from δW according to

ξz = i

kr

[
(rξr )′ + imξθ

]
, (30.5)

where (. . .)′ denotes differentiation with respect to r . This is valid as long as k �= 0.
In this case we have

Q⊥ = ik Bzξ⊥ = ik Bz (ξr êr + ξθ êθ ) , (30.6)

∇ · ξ⊥ = 1

r
(rξr )′ + imξθ

r
, (30.7)

κ = b̂ · ∇b̂ = 0, (30.8)

and

J‖ = 0. (30.9)

In cylindrical geometry, the potential energy per unit length is

δW

L
= π

μ0

a∫

0

W (r )rdr . (30.10)

For the case k �= 0, using Eqs. (30.5, 30.6, 30.7, 30.8, 30.9),

W (r ) = B2
z

[
k2
(|ξr |2 + |ξr |2

)+ 1

r2

∣∣(rξr )′
∣∣2 + m2

r2
|ξθ |2

+ im

r2

(
rξ∗

r

)′
ξθ − im

r2
(rξr )′ ξ∗

θ

]
. (30.11)

Then after a considerable amount of algebra, Eq. (30.10) can be re-written as

δW

L
= π

μ0

a∫

0

rdr B2
z

{∣∣∣∣k0ξθ − im

k0r2
(rξr )′

∣∣∣∣
2

+ k2

k2
0r2

(∣∣(rξr )′
∣∣2 + r2k2

0 |ξr |2
)}

,

(30.12)
where k2

0 = m2/r2 + k2. We note that ξθ appears only in the first term in the inte-
grand. Setting this term to zero, we find that he minimizing trial function must have

ξθ = im

m2 + k2r2
(rξr )′ , (30.13)

so that Eq. (30.12) becomes
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δW

L
= π

μ0

a∫

0

rdr
k2 B2

z

m2 + k2r2

{∣∣(rξr )′
∣∣2 + (m2 + k2r2

) |ξr |2
}
. (30.14)

We can draw two conclusions from Eq. (30.14):

• δW > 0 for k2 �= 0, so that the θ -pinch is stable for all finite k.
• δW → 0 for k2 → ∞, so that the stability becomes marginal for very long

wavelengths.

The MHD stability of the θ -pinch is explained as follows:

• J‖ = 0 (J = Jθ êθ , B = Bêz), so that there are no current driven modes.
• κ = 0 (no field-line curvature), so

(
ξ⊥ · ∇ p0

) (
κ · ξ⊥

) = 0 and there are no
pressure driven modes.

• Therefore, there is no MHD source of “free energy” to drive instability.

However, real θ -pinch have finite length and therefore have field-line curvature,
so this can drive instability in the laboratory. This is the reason we have not consid-
ered the case k = 0 here. Also, there are also several non-MHD instability drives
that have rendered this concept problematical for magnetic confinement fusion.
The Z-pinch

For the Z-pinch, B = Bθ (r )êθ and J = Jz(r )êz , and the equilibrium condition is

dp0

dr
+ Bθ

μ0r

d

dr
(r Bθ ) = 0. (30.15)

Therefore J‖ = 0 and ξ‖ = ξθ . For m �= 0, the operator B · ∇ = im Bθ/r is well
behaved and can be inverted. In the case the minimizing condition is ∇ · ξ = 0, so
that

ξθ = i

m

[
(rξr )′ + ikξz

]
, (30.16)

which is valid as long as m �= 0. If m = 0, then B · ∇ = 0 everywhere and we must
consider ∇ · ξ⊥ in the minimization.

When m �= 0, we have

Q⊥ = im Bθ

r
(ξr êr + ξθ êθ ) , (30.17)

∇ · ξ⊥ + 2ξ⊥ · κ = r

(
ξr

r

)′
+ ikξz, (30.18)

κ = − êr

r
, (30.19)

and
J‖ = 0. (30.20)
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Again, after much algebra, we find

δW

L
= π

μ0

a∫

0

rdr

{
(
2μ0r p′ + m2 B2

θ

) |ξr |2
r

+ m2r2 B2
θ

m2 + r2k2

∣∣∣∣
(

ξr

r

)′∣∣∣∣
}

. (30.21)

The last term is minimized for k2 → ∞, so the stability of the Z-pinch is determined
by the sign of

δW

L
= π

μ0

a∫

0

rdr
(
2μ0r p′ + m2 B2

θ

) |ξr |2
r

. (30.22)

Suppose the integrand of Eq. (30.22) is negative in some interval r0 < r < r1.
Then we can choose the trial function such that ξr �= 0 inside this interval, and
ξr = 0 outside it. Since this interval is arbitrary, we conclude that a necessary and
sufficient condition for the stability of the Z-pinch when m �= 0 is

2μ0r
dp0

dr
+ m2 B2

θ > 0 (30.23)

at all points in the fluid.
We can use the equilibrium condition, Eq. (30.15), to eliminate the pressure gra-

dient from the Eq. (30.23). The result is

2Bθ

d

dr
(r Bθ ) < m2 B2

θ . (30.24)

This can be re-written in either of two forms. The first is

r2

Bθ

d

dr

(
Bθ

r

)
<

1

2

(
m2 − 4

)
. (30.25)

For r → 0, Bθ ∼ r , so Bθ/r ∼ constant. In this limit, the stability condition is
therefore m2 > 4, so that the interior of the Z-pinch is stable for |m| > 2 and
marginal for |m| = 2. For r → ∞, Bθ ∼ 1/r and d(Bθ /r )/dr ∼ 1/r3 → 0, so the
same conclusion holds in this limit.

The second form of the stability condition is

1

B2
θ

d

dr

(
r B2

θ

)
< m2 − 1. (30.26)

For r → ∞, d(r B2
θ )/dr ∼ −1/r2 → 0, and the stability condition is m2 > 1.

Therefore, all |m| > 1 are stable and |m| = 1 is marginal, in this limit. For r → 0,
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r B2
θ ∼ r3 and the left-hand side of Eq. (30.26) ∼ r > 0, so that the core is always

unstable to the |m| = 1 mode.
Note that, since J‖ = 0, this |m| = 1 mode is not a current-driven mode. Rather,

stability is determined by a competition between field-line bending (stabilizing) and
unfavorable curvature (destabilizing). The latter wins out in the core of the Z-pinch
for the mode with |m| = 1.

We now consider the case m = 0. Here B · ∇ = 0 everywhere, and so ∇ · ξ �= 0.
After a formidable calculation, δW is found to be

δW

L
= π

μ0

a∫

0

rdr

{
rΓp0 B2

θ /μ0

Γp0 + B2
θ /μ0

+ 2r p′
0

} |ξr |2
r2

, (30.27)

with

ξz = i

Γp0 + B2
θ /μ0

[
r B2

θ

μ0

(
ξr

r

)′
+ Γp0

r
(rξr )′

]
(30.28)

for the minimizing perturbation. Again, stability requires that the integrand of
Eq. (30.27) be positive for all r , which leads to the stability condition for m = 0
modes:

−r

p0

dp0

dr
= −d ln p0

d ln r
<

4Γ

2 + Γβθ

, (30.29)

where the poloidal beta is βθ = 2μ0 p0/B2
θ . The Z-pinch can support a pressure

gradient as long as it is not too large.
We remark that, since the condition (30.29) depends on the adiabatic index Γ,

it requires that the fluid satisfy the adiabatic law. This is seldom the case for real
plasmas. In that case, all bets are off as far as m = 0 stability is concerned.

The general screw pinch
You may have observed that the stability calculations become increasingly formi-
dable as the equilibrium becomes more complex. In this regard, the case of the
general screw pinch inherits some of the worst elements of the calculations for the
θ -pinch and the Z-pinch. It will therefore be treated here with even more informality.

For the general screw pinch, B = Bθ (r )êθ + Bz(r )êz and the equilibrium
condition is

d

dr

(
p0 + B2

θ + B2
z

2μ0

)
+ B2

θ

μ0r
= 0. (30.30)

The minimizing perturbation has

B · ∇
(

ξ‖
B

)
= −∇ · ξ⊥. (30.31)
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In this case we can write B · ∇ = i F(r ), where F(r ) ≡ k · B = m Bθ /r + k Bz .
Therefore, B ·∇ is well behaved everywhere that F �= 0. In that case the minimizing
perturbation has

ξ‖ = i B

F
∇ · ξ⊥. (30.32)

The roots r0 of the equation F = 0 are called singular surfaces (again associating
the radial coordinate with flux surfaces), for at these points B · ∇ is singular and
cannot be inverted. From our discussion in Lecture 29, we can still choose a “well-
behaved” ξ‖ that still minimizes δW , so that we can draw reliable conclusions from
the energy principle. Physically, the surfaces r0 are associated with k‖ = 0, so that
the field-line bending term is minimized. We may expect these surfaces to play an
important role in determining stability.

Under these circumstances, and “after some algebra,” one finds

δW

L
= π

μ0

a∫

0

(
f
∣∣ξ ′

r

∣∣2 + g |ξr |2
)

dr , (30.33)

where

f = r F2

k2
0

(30.34)

and

g = 2
k2

k2
0

(
μ0 p′

0

)+
(

k2
0r2 − 1

k2
0r2

)
r F2 + 2k2

rk4
0

(
k Bz − m Bθ

r

)
F. (30.35)

Some general remarks can be made as follows:

1. First, f ≥ 0 for all r , so the term f
∣∣ξ ′

r

∣∣2 is stabilizing. However, it vanishes at
the singular surfaces r0 where k · B = 0, so that we may expect instability to be
associated with these radii.

2. The sign of the term g |ξr |2 is determined by the sign of g. The minimizing
displacement therefore should have |ξr |2 > 0, where g < 0, and |ξr |2 = 0 where
g > 0.

It turns out that the analysis of pressure-driven modes arising from the p′
0 term

requires a detailed analysis of the behavior of the solutions of the Euler equation (the
ideal MHD wave equation) near its “regular singular points.” This will be briefly
outlined in Lecture 31.

For current-driven modes (p′
0 = 0), the sign of g is determined by the sign of F .

For the case of a “straight torus” when k is quantized, we can write
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Fig. 30.4 An “unwrapped” cylindrical flux surface showing the field lines

F = Bθ

r
(m + nq) , (30.36)

where

q (r ) = r Bz (r )

RBθ (r )
(30.37)

is called the safety factor. Consider an unwrapped “flux surface,” i.e., a cylinder of
radius r unwrapped and flattened. The magnetic field lines lie completely within
such surfaces, as sketched in Fig. 30.4. The wrapping angle is φ = tan−1 Bθ /Bz .
We define the pitch of the field lines in the surface as P(r ) = r Bz/Bθ . This is the
distance that one would travel axially (in the z-direction) by following a field line
through one circuit from θ = 0 to θ = 2π . The pitch is a function of radius, meaning
that the wrapping angle varies from surface to surface. The safety factor is therefore
the normalized pitch, q = P/R. The quantity rq ′/q ≡ d ln q/d ln r is called the
magnetic shear.

From Eq. (30.36) we see that when F = 0, q = −m/n, i.e., q is a rational
number. This is why these surfaces are also called rational surfaces. The field lines
close upon themselves after m turns in the poloidal (θ ) direction and n turns in the
toroidal (axial, or z) direction, within the surface.

The safety factor at the outer boundary r = a is q(a) = aBz(a)/RBθ (a). Since
Bθ (a) ∼ I/a, where I is the total toroidal (axial) current, q(a) ∼ a2 Bz(a)/I ∼
(total toroidal flux)/(total toroidal current). The more current for a given flux, the
smaller q(a).

The configuration is unstable if g < 0, which can only occur if F < 0 or
q(r ) < − m/n. (In the tokamak literature, it is customary to write n → −n, so that
q < m/n. Since it is only the relative orientation of kθ = m/r and kz = k = n/R
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that enter the theory, it is also customary to consider only m ≥ 0. Here we employ
the standard mathematical notation for the Fourier decomposition and live with the
minus sign.) Therefore, restricting the discussion to m > 0, the configuration is
stable if n > 0 and may be unstable if n < 0 and q < m/ |n|.

The m = 1 mode may be unstable if q(r ) < 1/ |n|. We therefore must require
q(r ) > 1 everywhere to assure stability. In particular, at r = a we require
Bz(a)/Bθ (a) > R/a. This is the Kruskal–Shafranov stability condition. It means
that the ratio of the toroidal (axial) flux to the toroidal (axial) current cannot be
too small. It implies the necessity of a strong toroidal magnetic field for stability.
This field, which does not contribute to confinement, must be supplied by exter-
nal means. The Kruskal–Shafranov condition forms the basis for the design of the
tokamak.

We have seen that the minimizing displacement must have |ξr |2 > 0 when g < 0
and |ξr |2 = 0 when g > 0. For the case when g is a monotonically increasing
function of r , the situation is sketched in Fig. 30.5.

Fig. 30.5 The safety factor q(r ), the function g(r ), and the minimizing trial function ξ (r ) for a
tokamak

This is the general case for a tokamak. The “top hat” shape of the displacement is
typical of the m = 1 mode in a tokamak. Note that the displacement vanishes outside
the rational surface, so that it does not “feel” the wall. The most unstable m = 1
displacement in a tokamak will consist (approximately) of a rigid shift of the flux
surfaces inside the rational surface and no displacement outside the rational surface.
We emphasize that this discussion, and the figure, are heuristic and approximate
because of the stabilizing term in g proportional to F2; the root of g = 0 does not
exactly correspond to the root of F = 0. However, the picture serves as a reasonable
guide to what happens when a more detailed analysis is attempted.

If instead g is a monotonically decreasing function of r , then the situation is like
that shown in Fig. 30.6.

The minimizing displacement now must vanish inside the rational surface, and
be non-zero outside of t. However, it must also satisfy the boundary condition
ξr (a) = 0. Therefore ξ ′ �= 0 and the first term in Eq. (30.34) can contribute to
stabilization. The details depend on the relative location of the wall and the rational
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Fig. 30.6 The safety factor q(r ), the function g(r ), and the minimizing trial function ξ (r )
for an RFP

surface. This type of stabilization is called wall stabilization. A monotonically
decreasing profile is characteristic of an RFP. We will describe this concept in more
detail when we discuss plasma relaxation in a later lecture.

This concludes our discussion of the energy principle. It has provided a means of
deducing some very general properties of MHD stability, and we never had to solve
a differential equation! This will not be the case from now on. As mentioned, the
properties of the Euler equation near a regular singular point must be investigated in
order to determine the stability of pressure-driven modes. And the energy principle
is no longer valid in the presence of resistivity, so of necessity we must address
differential equations when we study resistive instabilities. That is what follows.

Of course, all of the calculations of this lecture can be (and have been) carried out
in toroidal geometry. They are much more tedious, but the primary concepts remain
unchanged.
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Lecture 31
A Very Brief and General Tour of Suydam
Analysis for Localized Interchange Instabilities

If stupidity got us into this mess, then why can’t it get us
out?

Will Rogers

We have seen that, for the general screw pinch, the perturbed potential energy is

δW =
a∫

0

L
(
r, ξ, ξ ′) dr , (31.1)

where L is a Lagrangian density proportional to f ξ ′ 2 + gξ2. The Euler equation
corresponding to Eq. (31.1) is

d

dx

(
∂L

∂ξ ′

)
− ∂L

∂ξ
= 0. (31.2)

If one uses the equilibrium condition to eliminate Jz in terms of p′
0, Eq. (31.2) can

be written in the standard form

ξ ′′ − Pξ ′ − Qξ = 0, (31.3)

where

P = 3

r
+ 2F ′

F
− 2k2r

m2 − k2r2
, (31.4)

Q = 1

r2

[
k2r2 + (m2 − 1

)]− 2k2g(r )

F
[
m2 + k2r2

]2 − 2μ0k2 p′
0

r F2
, (31.5)

and F(r ) = k · B, and g(r ) was defined in Eq. (30.35). Equation (31.3) is a second-
order ordinary differential equation for the radial component of the minimizing
displacement subject to the boundary conditions: ξ (0) is finite and ξ (a) = 0.

Schnack, D.D.: A Very Brief and General Tour of Suydam Analysis for Localized Interchange
Instabilities. Lect. Notes Phys. 780, 193–195 (2009)
DOI 10.1007/978-3-642-00688-3 31 c© Springer-Verlag Berlin Heidelberg 2009
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Any point r0 where P → ∞ is a regular singular point of Eq. (31.3). We see
from Eq. (31.4) that this occurs when F = 0, so that the regular singular points of
the Euler equation correspond to the rational surfaces of the stability analysis. We
know from the theory of ordinary differential equations (the “method of Frobenius”)
that the solution near a regular singular point behaves like

ξ ∼ (r − r0)n
∑

j

a j (r − r0) j , (31.6)

where n is a root of the indicial equation

n2 + n + M2 = 0, (31.7)

which is obtained from an expansion of P and Q about r = r0. If this procedure is
carried out for Eqs. (31.3, 31.4, 31.5), one finds

M2 = 2μ0 p′
0

r B2
z

(
μ

μ′

)2
∣∣∣∣∣
r=r0

(31.8)

and

μ = Bθ

r Bz
= 1

Rq
. (31.9)

The roots of Eq. (31.7) are

n1,2 = −1

2

[
1 ± (1 − 4M2

)1/2
]
, (31.10)

so that near r0,

ξ ∼ a (r − r0)n1 + b (r − r0)n2 . (31.11)

If M2 < 1/4, then n1 and n2 are real. That means that there is at least one
solution [for example, the + sign in Eq. (31.10)] that behaves like (r − r0)−|n| near
r = r0; this solution is singular.

If M2 > 1/4, then n1 and n2 are complex. In that case, the solutions always
behave at least like (r − r0)−1/2 near r = r0; they are also singular.

Therefore there is always a singular solution near r = r0. This is not acceptable
behavior for a displacement. As we saw in Lecture 29, this can always be resolved
by choosing a neighboring displacement ξ̃ that equals ξ away from r0, but is well
behaved in the vicinity of r0; it differs from ξ only in a small region of width 2ε,
ε � 1, about r0.

If the roots of the indicial equation are real, then ε can be chosen so small that the
power series solution is dominated by the term (r − r0)n [i.e., the first term in the
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expansion (31.6)]. It turns out that, when this is substituted into the energy principle,
the result is δW > 0, i.e., stability.

If the roots are complex, then n1,2 = − (1 ± iβ) /2, where β = (4M2 − 1)1/2.
Then the displacement behaves like

ξ ∼ (r − r0)−
1
2 ±i β

2

= (r − r0)−1/2 (r − r0)±iβ/2

= (r − r0)−1/2 e±i(β/2) ln(r−r0)

≈ (r − r0)−1/2 cos

[
1

2
β ln |r − r0| + φ

]
, (31.12)

where φ is a phase determined by the boundary conditions. This solution oscillates
increasingly rapidly as r → r0. In this case, the energy principle gives

δW< =
r0∫

0

W (r )rdr

= r3
0 B2

z μ
′2

2
[
1 + (r0μ)2

] [1 − 2M2 + (1 − 2M2
)

cos 2ψ + β sin 2ψ
]
, (31.13)

where

ψ = 1

2
β ln ε + φ. (31.14)

We can make ψ anything we like by a suitable choice of ε.
Now, as ψ varies between 0 and π , the term in brackets in Eq. (31.13) varies

between 1 and 1 − 4M2. Therefore, δW< < 0 if 1 − 4M2 < 0. A similar analysis
holds for r > r0. Therefore, the condition for stability is M2 < 1/4, which is
the same as the condition for real roots of the indicial equation. Therefore, from
Eq. (31.8), the stability condition for pressure-driven modes in the general screw
pinch is

r

4

(
μ

μ′

)2

+ 2μ0 p′
0

B2
z

≥ 0 (31.15)

or

− 2μ0 p′
0 <

B2
z

4

(
d ln μ

d ln r

)2

, (31.16)

at every point in the system. This is called the Suydam criterion for stability. Again,
we see that the pinch can support a negative pressure gradient, as long as it is not
too large.



www.manaraa.com



www.manaraa.com

Lecture 32
Magnetic Reconnection

We’ll meet again, don’t know where, don’t know when
Ross Parker and Charlie Hughes

We now begin discussions of the dynamics of the magneto-fluid system when
resistivity is included in the model. This is called resistive MHD. There are several
important differences from ideal MHD.

First, the ideal Ohm’s law is no longer valid, so all the things we have been
talking about regarding MHD stability, etc., are also no longer valid. In resistive
MHD, the force operator is no longer self-adjoint. We will have to resort to solving
differential equations.

Second, in ideal MHD the topology, or “connectedness,” of the magnetic field
is fixed for all time, and the magnetic field lines are co-moving with the fluid. This
is not the case in resistive MHD. Now the fluid can slip through the field, and the
field lines no longer have integrity in time. Their topology can change. This process
is called magnetic reconnection, and it plays a fundamental role in the behavior of
real plasmas in both laboratory and astrophysical settings, even when the resistivity,
when measured by the magnetic Reynolds’ number or the Lundquist number, is
extremely small.

Consider the configuration shown in Fig. 32.1.

Fig. 32.1 A sheared magnetic field in slab geometry

The magnetic field is B0 = B(x)êy + Bz0êz , with Bz0 = constant, so the current is
J = Jz(x)êz , and the equilibrium condition is dp/dx = Jz B. There are conducting
walls at x = ±L . The system extends to infinity at ±y. This equilibrium is called a

Schnack, D.D.: Magnetic Reconnection. Lect. Notes Phys. 780, 197–200 (2009)
DOI 10.1007/978-3-642-00688-3 32 c© Springer-Verlag Berlin Heidelberg 2009
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sheet pinch. We choose B(x) such that B(0) = 0. Then if k = kêy , F(x) = k · B0 =
0 at x = 0, so x = 0 is a singular surface.

We now consider the dynamics of the sheet pinch in ideal MHD. The transverse
(x) magnetic field evolves according to Faraday’s law. We assume instability and
write the time dependence as eγ t . Then γ Bx1 = −ik Ez1 or

Ez1 = iγ Bx1

k
. (32.1)

From the ideal MHD Ohm’s law, Ez1 = −Vx1 B(x) so that

Vx1 (x) = iγ Bx1

F (x)
. (32.2)

If γ �= 0, Vx1 → ∞ at x = 0 (where F = 0). Well-behaved solutions require
γ = 0, so that the sheet pinch is stable in ideal MHD.

Now include resistivity. If the resistivity is constant, the perturbed field evolves
according to

∂B1

∂t
= ∇ × (V1 × B0) + η

μ0
∇2B1. (32.3)

Again assuming instability, the x-component is

γ Bx1 = i FVx1 + η

μ0

(
d2 Bx1

dx2
− k2 Bx1

)
, (32.4)

so that

Vx1 = − i

F

[
γ Bx1 − η

μ0

(
d2 Bx1

dx2
− k2 Bx1

)]
. (32.5)

Well-behaved solutions are now possible if

γ Bx1 = η

μ0

(
d2 Bx1

dx2
− k2 Bx1

)
(32.6)

near F = 0, so that instability can occur. This is called resistive instability. Note,
however, that γ ∼ η, so that the growth is on a resistive time scale relative to the
scale lengths on the right-hand side of Eq. (32.6). This means that any unstable
growth will be on a time scale γ −1 ∼ τR much slower than the Alfvén time τA,
especially if the Lundquist number S = LVA/(η/μ0) = τR/τA >> 1; we expect
γ τA << 1. Recall that Alfvén waves incorporate the effects of inertia. This implies
that for time scales much longer than the Alfvén time, we can neglect inertia in the
region away from F = 0. Further, since the resistivity only affects the solutions
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near F = 0, we can ignore resistivity as well in this “outer region”; this region is
therefore always in a state of MHD equilibrium.

A possible configuration of the sheet pinch including the effects of resistivity is
shown in Fig. 32.2.

Fig. 32.2 A “reconnected” magnetic field line resulting from resistivity

The resistivity is important only in a small layer about the singular surface, where
F = 0. Equation (32.6) allows finite Bx1 at x = 0. Field lines that were originally
straight can now break, change their topology, and “reconnect” within this small
layer. This is called magnetic reconnection. The region outside the small layer is
governed by ideal MHD and inertia is ignored.

If there is periodicity in the y-direction, as implied by k = kêy , then magnetic
reconnection results in the formation of magnetic islands, as shown in Fig. 32.3.

Fig. 32.3 Flow pattern in the vicinity of a magnetic island

The magnetic island has a separatrix, which separates field lines of different topolo-
gies (open outside the island and closed inside the island). The magnetic reconnec-
tion occurs at the X-points. The center of the island is called the O-point. Typical
flows associated with magnetic islands are also shown.

The width of magnetic island can be defined by means of flux conservation within
the separatrix (see Fig. 32.4).
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Fig. 32.4 Illustration of the calculation of the reconnected flux and island width

We require

W∫

0

Bydx =
λ/2∫

0

Bx1dy. (32.7)

Near x = 0, By = B ′
y0x ≈ B0x/L , so that the left-hand side is B0W 2/2L . With

Bx1 = B1 sin ky, the right-hand side is just 2B1/k. Solving for the width, we find

W =
(

4B1L

B0k

)1/2

, (32.8)

where B1 is the amplitude of the perturbed magnetic field.
Magnetic reconnection can occur as a steady-state process in which two

oppositely directed magnetic fields are pushed together by external means. The
reconnection then occurs at a constant rate γ .

Magnetic reconnection can also occur spontaneously as a resistive instability.
The magnetic island then grows at a rate eγ t .

We will discuss both possibilities in the next Lectures.
Magnetic reconnection is an important phenomenon because ideal MHD con-

straints trap energy in the magnetic field. Resistive MHD relaxes those constraints
and allows a new source of free energy to drive instabilities. Magnetic reconnection
is thought by some to be responsible for “energizing the universe,” by means of
solar and stellar flares, heating of diffuse plasmas, the formation and evolution of
astrophysical jets, etc. Unfortunately, for most cases of interest S � 1 (for a toka-
mak S ∼ 107−10, and it is even larger in astrophysical settings). Since γ → 0 when
η → 0, we expect (and will find) that γ ∼ S−α , 0 ≤ α ≤ 1. It is difficult to account
for the observed rate of energy release with these slow growth rates. The quest for
a cause of “fast” magnetic reconnection has been alive for five decades, and it still
goes on. Undoubtedly it will continue for many more.
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Lecture 33
Steady Reconnection: The Sweet–Parker
Problem

Most of the basic truths of life sound absurd at first
hearing.

Elizabeth Goudge

In this lecture, we discuss the problem of steady-state magnetic reconnection. We
consider two adjacent flux systems of oppositely directed magnetic field, as in the
sheet pinch of Lecture 32. They meet at x = 0, where B = 0. The walls are taken
to be far away, i.e., L → ∞.

We now imagine that these flux systems are pushed together by some external
means with velocity u0, i.e.,Vx (x → ±∞) → ±u. As the systems are forced
together, the current density Jz near x = 0 will intensify and will form an extended
current sheet in y of length 2Δ. In order to conserve mass, the fluid will be forced
out from the center of the current sheet with velocity V0 in the ±y-directions. In
accordance with the discussions of Lecture 32, we expect magnetic reconnection
to occur in some small region of width 2δ. The problem is to find a steady-state
solution and determine the rate of magnetic reconnection. This problem was first
posed and solved by Sweet and Parker,1 and it is called the Sweet–Parker problem.
It is one of the most famous and important problems in resistive MHD. The situation
is sketched in Fig. 33.1.

Fig. 33.1 Basic geometry for
the Sweet–Parker problem

1 P. A. Sweet, Electromagnetic Phenomena in Cosmical Physics, Cambridge University Press,
Cambridge, UK, 1958; E. N. Parker, J. Geophys. Res. 62, 509 (1957).

Schnack, D.D.: Steady Reconnection: The Sweet–Parker Problem. Lect. Notes Phys. 780,
201–204 (2009)
DOI 10.1007/978-3-642-00688-3 33 c© Springer-Verlag Berlin Heidelberg 2009
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We picture2 a steady state in which fluid enters the current sheet at velocity u0.
This is the rate at which magnetic flux enters the inner layer. This magnetic flux is
then acted upon by resistivity, gives up its hold on the fluid, and reconnects. The fluid
then flow out along the current sheet. No more fluid can enter the layer and carry in
magnetic flux until the previous bit of fluid leaves. The ratio of the inflow velocity
to the outflow velocity, u0/V0, therefore determines the rate at which magnetic flux
can be destroyed by reconnection; this is the reconnection rate.

If we assume incompressibility, then the mass coming into the inner layer must
equal the mass exiting the inner layer. Since ∇ · V = 0,

u0 L = V0δ. (33.1)

Away from the inner layer, the flow and field are governed by ideal MHD, so

Ez = u0 B0. (33.2)

Within the inner layer, resistivity dominates, so

Ez = ηJz = ηB0

μ0δ
. (33.3)

In steady state, Ez ∼ constant, so equating (33.2) and (33.3),

u0 ≈ η

μ0
δ. (33.4)

We have seen that we can ignore inertia away from the inner layer, so that in the
outer region the x-component of force balance is

∂

∂x

(
p + B2

2μ0

)
= 0. (33.5)

Integrating this outward from the current sheet (from x = 0 to ∞), we have

p∞ + B2
∞

2μ0
= pmax, (33.6)

where p∞ and B∞ are the pressure and magnetic fields far from the current sheet
and pmax is the pressure at the center of the current sheet; we identify p∞ and B∞
with p0 and B0, the upstream pressure and field. Then

1

2
B2

0 = pmax − p0. (33.7)

2 This discussion follows that of Dieter Biskamp, Magnetic Reconnection in Plasmas, Cambridge
University Press, Cambridge, UK (2000).
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Force balance along the sheet, in the y-direction, is ρV · ∇V = −∇ p or

∂

∂y

(
1

2
ρV 2

y

)
= −∂p

∂y
. (33.8)

Integrating from 0 to Δ, we have

1

2
ρV 2

0 = pmax − p0. (33.9)

Equating Eqs. (33.7) and (33.8), we find

V0 = B0√
μ0ρ

≡ VA0. (33.10)

The downstream (outflow) velocity is therefore equal to the upstream Alfvén veloc-
ity. This is a limit to how fast the fluid can get out of the layer so that more recon-
nection can occur. It is set by the upstream conditions, far from the current sheet. It
acts as a throttle on the reconnection rate.

Equations (33.1), (33.4), and (33.10) are three equations in the five unknowns u0,
V0, δ, Δ, and η. We can determine u0 and δ in terms of V0, Δ, and η. One result is

(
δ

Δ

)2

= (η/μ0) Δ

VA
≡ S0 (33.11)

or

Δ

δ
= S1/2

0 , (33.12)

where S0 is the Lundquist number based on the upstream magnetic field and the
length of the current layer. Generally S0 � 1, so that the current layer becomes
very long and thin. The other result is

u0

V0
= u0

VA0
≡ M0 = S−1/2

0 , (33.13)

where M0 is the upstream Alfvén Mach number. Therefore, the steady-state recon-
nection rate scales like S−1/2

0 � 1. This is called the Sweet–Parker rate. It is one of
the most famous results in MHD.

If you push harder from the outside, so that u0 increases, then for a given S0,
M0 = constant, so that V0 = VA0 must also increase to maintain the same ratio. This
occurs by compressing the field and increasing B0; the rate of reconnection remains
constant and is set by the resistivity. Pushing harder at fixed S0 just compresses the
magnetic field, it does not increase the reconnection rate.
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Unfortunately, for S ∼ 1010, M0 ∼ 10−5 is not large enough to account for
the inferred reconnection rate associated with solar flares, coronal mass ejections,
tokamak sawtooth crashes, and other experiments. To date, nobody has found a
way within the resistive MHD model to make the reconnection rate scale faster
than S−1/2; one is stuck with Sweet–Parker. Over the past several years, there has
been considerable research that indicates that so-called fast reconnection (i.e., faster
than Sweet–Parker) can occur if effects outside of resistive MHD are accounted for
in Ohm’s law. This is not surprising in light of Eq. (33.12); at large S, the width
of the reconnection layer δ can become small enough that the fundamental MHD
assumptions break down, and other physics may dominate the reconnection process.
However, theories based on these equations are quite complicated and are difficult
to analyze and solve in more general geometry. Today, one still relies primarily on
resistive MHD to study the global dynamics, with appeals to artificially enhanced
“anomalous” resistivity to obtain sufficient rates of reconnection.
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Lecture 34
Resistive Instabilities: The Tearing Mode

I have yet to see any problem, which, when you looked at it
in the right way, did not become still more complicated.

Poul Anderson

We now discuss the situation in which magnetic reconnection arises spontaneously
in the form of an exponentially growing instability. This instability was originally
called the tearing mode, because it “tears” the magnetic field apart, something that
is forbidden in ideal MHD.

We again consider the sheet-pinch geometry of Lectures 32 and 33. A sketch of
F(x) = k · B versus x is shown in Fig. 34.1.

Fig. 34.1 Magnetic field
profile for the sheet pinch
configuration

The half width of the current sheet (the region of non-uniform magnetic field) is a.
The current density is μ0 Jz = d B0/dx = B′

0. We anticipate from the discussion
of Lecture 32 that the effects of resistivity are felt primarily in a small region about
x = 0; we take its half width to be εa, where ε � 1. Outside this layer the system
is in ideal MHD equilibrium. Inside the layer the effects of resistivity and inertia
must be accounted for. The flow is assumed to be incompressible. We expect that
any instability will have γ ∼ ηα within the layer. Our approach will be to make use
of the separation of scales (ε � 1, γ τA � 1) to obtain separate solutions inside
and outside the layer. These must then be matched at the boundary of the layer.
The matching condition will provide expressions for the growth rate γ and the layer
width εaas functions of the resistivity η, the wave number k, and the equilibrium
parameters a and B0.

Schnack, D.D.: Resistive Instabilities: The Tearing Mode. Lect. Notes Phys. 780, 205–211 (2009)
DOI 10.1007/978-3-642-00688-3 34 c© Springer-Verlag Berlin Heidelberg 2009
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The presentation given in this lecture is heuristic, although it leads to the correct
conclusions. Of course, it can all be made thoroughly rigorous (although less trans-
parent). The seminal paper on the topic is Furth, Killeen, and Rosenbluth, Phys.
Fluids 6, 459 (1963), often abbreviated at “FKR.” The presentation given here fol-
lows that of Manheimer and Lashmore-Davies.1

The goal is to find expressions for the growth rate γ and the inner layer width
εa in terms of the resistivity η and the wave number k. The plan of attack is as
follows:

1. Compute the total power P = V · F generated by the MHD force F. If P >

0, then d(kineticenergy)/dt > 0 and the system is unstable; if P < 0, then
d(kineticenergy)/dt < 0 and the system is stable.

2. Make a separation of scales argument (ε � 1, γ τA � 1) to conclude that
all of the energy is dissipated (i.e., turns into kinetic energy) in the inner
region.

3. Use the equation of motion and the induction equation in the inner layer to obtain
an ordinary differential equations relating Vx1 and Bx1.

4. Reduce this to an inhomogeneous ODE for Vx1.
5. Estimate the characteristic length scales associated with the solutions of this

ODE to obtain a relationship f1 (εa, γ ) = 0 with η and k as parameters.
6. Estimate the Ohmic power dissipated in the inner region.
7. Equate this to the power generated in the outer region to obtain a second rela-

tionship of the form f2 (εa, γ ) = 0.
8. Simultaneous solution of f1 = 0 and f2 = 0 will yield the desired expressions

γ = g1 (η, k) and εa = g2 (η, k).

1. Compute the total power generated by F in the outer region

The ideal MHD force is

F = J × B − ∇ p, (34.1)

and the total power is

P =
∫

dV V · F. (34.2)

Since ∇ · V = 0, we can write V = ∇ × R, where R = Rêz . For reference, the
velocity components are

Vx1 = ik R (34.3)

and

Vy1 = −d R

dx
. (34.4)

1 Wallace M. Manheimer and Chris Lashmore-Davies, MHD Instabilities in Simple Plasma Con-
figurations, Naval Research Laboratory, Washington, DC (1984).
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Therefore,

P =
∫

dV ∇ × R · F

=
∫

dV [∇ · (R × F) + R · ∇ × F]

=
∫

dV R · ∇ × F +
∫

S

d S (R × F) · n̂

=
∫

dV R · ∇ × F. (34.5)

The surface integral has been dropped because the boundary is far from the current
sheet and the solution is “well behaved” at infinity.

The curl of the perturbed force is

∇ × F1 = ∇ × (J0 × B1) + ∇ × (J1 × B0) . (34.6)

In this geometry Eq. (34.6) has only a z-component, which is

êz · ∇ × F1 = 1

μ0
B ′

0
d Bx1

dx
+ 1

μ0
B ′′

0 Bx1 + ik

μ0
B ′

0 By1 + ik

μ0
B0

(
d By1

dx
− ik Bx1

)
.

(34.7)
Since ∇ · B1 = 0, By1 = (i/k)d Bx1/dx , and Eq. (34.7) becomes

êz · ∇ × F1 = − B0

μ0

[
d2 Bx1

dx2
−
(

k2 + B ′′
0

B0

)
Bx1

]
. (34.8)

The power, Eq. (34.5), is then

P = −
∞∫

−∞
dx R

B0

μ0

[
d2 Bx1

dx2
−
(

k2 + B ′′
0

B0

)
Bx1

]
, (34.9)

Now, from Eq. (34.3), R = − (i/k) Vx1, and from the ideal MHD induction equa-
tion, Vx1 = (γ / ik B0) Bx1, so that

P =
∞∫

−∞
dx

γ

μ0k2
Bx1

[
d2 Bx1

dx2
−
(

k2 + B ′′
0

B0

)
Bx1

]
. (34.10)

2. Separation of scales

Since we are ignoring inertia in the outer region, the only contribution from γ in
Eq. (34.10) can come from the inner region, i.e.,
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P =
εa∫

−εa

dx
γ

μ0k2
Bx1

[
d2 Bx1

dx2
−
(

k2 + B ′′
0

B0

)
Bx1

]
, (34.11)

i.e., all the power must be generated (and energy released) in the inner region.
Recall that x = 0 (where F = 0) is a regular singular point of the ideal MHD

wave equation, and the ideal MHD solutions are not well behaved there. They are
shown in Fig. 34.2.

Fig. 34.2 Illustration of the
constant-ψ approximation

Since n̂ · B1 must be continuous everywhere, Bx1 is continuous at x = 0,
but there may be a discontinuity in d Bx1/dx . In order to obtain a smooth solu-
tion, we make the approximation that Bx1 = constant within the inner layer, i.e.,
Bx1 ≈ Bx1 (0). This is called the “constant-ψ approximation” because of notation
used in FKR. Also, since we expect the inner layer to be very narrow, we also
expect

∣∣d2 Bx1/dx2
∣∣� ∣∣k2 Bx1

∣∣ across this region, as can be seen heuristically from
Fig. 34.2.

With these assumptions, Eq. (34.11) becomes, approximately,

P ≈ γ

μ0k2

εa∫

−εa

dx Bx1 (0)
d2 Bx1

dx2

≈ γ Bx1 (0)

μ0k2

(
d Bx1

dx

∣∣∣∣
εa

− d Bx1

dx

∣∣∣∣
−εa

)
. (34.12)

We now define the quantity

Δ′ ≡ 1

Bx1 (0)

(
d Bx1

dx

∣∣∣∣
εa

− d Bx1

dx

∣∣∣∣
−εa

)
, (34.13)

which depends only on the solution in the outer region, i.e., the region in ideal MHD
equilibrium. The total power is then

P = γ

μ0k2
B2

x1 (0) Δ′. (34.14)
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The sign of P depends on the sign of Δ′. If P > 0, then d(kinetic energy)/dt > 0
and the system is unstable, and vice versa. Therefore, the criterion for instability is

Δ′ > 0. (34.15)

This is a famous result first obtained in FKR. It is worth a few remarks given as
follows:

1. While all the power is dissipated in the inner region, the stability properties are
completely determined by the ideal MHD solution in the outer region.

2. The interplay between the inner and outer regions is important and is what makes
the tearing mode problem both interesting and difficult.

3. Δ′ > 0 is an important result because you do not need to do the whole resistive
MHD problem to determine stability. Just look at ideal MHD in the outer regions
and determine Δ′ at the singular surface. This is a great simplification and is the
basis for many computationally based tests of resistive MHD stability.

3. Equations for the inner region

In the inner region we must solve the equation of motion and the induction equa-
tion simultaneously. For the equation of motion, it proves convenient to use the
z-component of its curl. Invoking ∇ · V = 0, we have

iγρ0

k

(
d2Vx1

dx2
− k2Vx1

)
= − B0

μ0

[
d2 Bx1

dx2
−
(

k2 + B ′′
0

B0

)
Bx1

]
. (34.16)

The induction equation in the inner layer is

γ Bx1 = ik B0Vx1 + η

μ0

(
d2 Bx1

dx2
− k2 Bx1

)
. (34.17)

4. Inhomogeneous equation for Vx1

Eliminating the term d2 Bx1/dx2 − k2 Bx1 between these equations results in

ρo

(
d2Vx1

dx2
− k2Vx1

)
− k2 B2

0

γ η
Vx1 = ik

γ η

(
γ − η

μ0

B ′′
0

B0

)
Bx1(0), (34.18)

where we have used the constant-ψ approximation in writing the right-hand side.
This is an inhomogeneous ordinary differential equation for Vx1.

5. Estimate size of inner region

Since, in the inner layer, d2/dx2 � k2, the length scale for the variation of the
solution can be estimated by balancing the first and third terms on the left-hand side
of Eq. (34.18), i.e.,
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∣∣∣∣ρo
d2Vx1

dx2

∣∣∣∣ ∼
∣∣∣∣
k2 B2

0

γ η
Vx1

∣∣∣∣ . (34.19)

Using B0(x) ≈ B0x/a and setting x ≈ εa, we find

εa ≈
(

ρ0γ ηa2

B2
0 k2

)1/4

. (34.20)

This can be thought of as an equation of the form f1 (εa, γ ) = 0.

6. Estimate Ohmic power in inner region

The Ohmic power in the inner region is

PΩ ≈ ηJ 2
z1(0)εa, (34.21)

where

μ0 Jz1 ≈ By1 (εa) − By1 (−εa)

εa
. (34.22)

Since ∇ · B1 = 0, By1 = (i/k)d Bx1/dx and Eq. (34.22) becomes

Jz1 ≈ 1

μ0kεa
Δ′ Bx1 (0) . (34.23)

The Ohmic power in the inner region is therefore

PΩ ≈ ηεa

(
Δ′ Bx1 (0)

μ0kεa

)2

. (34.24)

7. Power dissipated in inner region equals power generated in outer region

Equating PΩ from Eq. (34.24) to the power generated in the outer region,
Eq. (34.14), we can find

γ ≈ (η/μ0) Δ′

εa
. (34.25)

[In light of Eq. (34.15), it is heartening to find that γ ∼ Δ′.] This can be viewed as
a second equation of the form f2 (εa, γ ) = 0.

8. Solve for γ and εa

The form of Eq. (34.25) indicates simple resistive diffusion within the inner
region. The interesting behavior of resistive instabilities comes about because the
size of the inner region εa also depends on resistivity through Eq. (34.20). From
Eqs. (34.20) and (34.25), we find

γ =
(

B2
0 k2

μ0ρ0a2

)1/5

Δ′4/5

(
η

μ0

)3/5

(34.26)
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and

εa =
(

B2
0 k2

μ0ρ0a2

)−1/5

Δ′1/5

(
η

μ0

)2/5

. (34.27)

These are the principal results, along with the instability condition, Eq. (34.15).
The scaling of γ with a fractional power of η indicates that the tearing mode

grows significantly faster than resistive diffusion. The equilibrium field diffuses at a
rate γR ∼ η/a2, so that γ /γR ∼ η−2/5 � 1 if η is very small. Resistive instabilities
can have appreciable effect even if the background is evolving resistively.

Equations (34.26) and (34.27) can be written in non-dimensional form as

γ τA = (Δ′a
)4/5

α2/5S−3/5 (34.28)

and

ε = (Δ′a
)1/5

α−2/5S−2/5, (34.29)

where S = τR/τA is the Lundquist number and α = ka is a non-dimensional wave
number. However, since we have assumed from the outset that S � 1, these scalings
should be viewed with caution at intermediate values of S. The range of validity for
Eqs. (34.28) and (34.29) depends on the particular problem under investigation. For
tokamaks, this generally requires S > 106.

We conclude with two special cases. For the first case the equilibrium field is −B0

for x < εa, B0 for x > εa, and varies linearly between these values in the inner
region.

By solving ∇ × (J0 × B1 + J1 × B0) = 0 in the outer regions, it can be shown
that

Δ′ = 2k

[
1 − ka − ka tanh ka

ka − (1 − ka) tanh ka

]
. (34.30)

Then Δ′ > 0 requires ka < 1. Similarly, if we take B0 (x) = B0 tanh (x/a), we find

Δ′ = 2

a

(
1

ka
− ka

)
, (34.31)

so that, again, instability requires ka < 1. The tearing mode evidently prefers long
wavelength. This is because long-wavelength displacements minimize the field-line
bending energy, which we know to be stabilizing. With ka � 1, Eq. (34.31) yields
Δ′ ≈ (2/a)(1/ka) or Δ′ ≈ 1/α. The non-dimensional scaling laws, Eqs. (34.28)
and (34.29), become in this long-wavelength limit

γ τA ≈ α−2/5S−3/5 (34.32)

and

ε ≈ α−3/5S−2/5. (34.33)

We remark that the tearing mode grows more slowly than the Sweet–Parker rate
of S−1/2.
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Lecture 35
Resistive Instabilities: Closing Remarks

And so it goes.
Kurt Vonnegut, Slaughterhouse Five

In Lecture 34, we presented a heuristic discussion of the tearing mode. The tearing
mode is centered about x = 0, where F(x) = k · B = 0. Note that this does not
require that B(0) = 0; it only requires that k be perpendicular to B there. Thus
the tearing mode (and other resistive modes) can occur even when there is a large
component of B in the z-direction. The scaling of the growth rate and resistive layer
width with the Lundquist number and normalized wave number for the tearing mode
are, for long wavelength,

γ τA ≈ α−2/5S−3/5 (35.1)

and

ε ≈ α−3/5S−2/5. (35.2)

The tearing mode derives its free energy from the configuration of the magnetic
field. As in ideal MHD, there are other resistive instabilities that derive their free
energy from different sources.1

For example, if we include the gravity in the x-direction we can get an instability
called the resistive g-mode. The growth rate and resistive layer width for this mode
scale like

γ τA ≈ α2/3S−1/3G2/3 (35.3)

and

ε ≈ α−1/3S−1/3G1/6, (35.4)

where G = τ 2
A A1. The form of A1 depends on the origin of the gravitational force.

If it is from a true gravitational field, then

1 H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963)

Schnack, D.D.: Resistive Instabilities: Closing Remarks. Lect. Notes Phys. 780, 213–218 (2009)
DOI 10.1007/978-3-642-00688-3 35 c© Springer-Verlag Berlin Heidelberg 2009



www.manaraa.com

214 Lectures in Magnetohydrodynamics

A1 ∼ − g

ρ0

dρ0

dx
; (35.5)

if it is from an accelerating frame of reference, then

A1 ∼ − 1

ρ0

d

dx

(
ρ0V̇0

)
; (35.6)

and, if it is from field line curvature, then

A1 ∼ − 1

τ 2
A

(
a2

4Rc

)
dβ0

dx
, (35.7)

where Rc is the radius of curvature of the field lines.
If we include a resistivity gradient dη/dx , then we can get an instability called

the rippling mode, which scales like

γ τA ≈ α2/5S−3/5 (35.8)

and

ε ≈ α−2/5S−2/5. (35.9)

There are some resistive instabilities that do not satisfy the “constant-ψ” approx-
imation. This can occur in a general screw pinch with a monotonically increasing
q-profile, when the displacement has the form of the “top hat” trial function intro-
duced in Lecture 30. Then the perturbation must vary rapidly across the resistive
layer centered about the singular surface. (This type of instability is thought to be
responsible for the “crash phase” of tokamak sawtooth oscillations.) These non-
constant-ψ modes can have a larger growth rate, i.e., γ τA ∼ S−1/2, but still do not
exceed the Sweet–Parker rate.

Resistive instabilities can be wall stabilized. The magnetic field must remain
parallel to any conducting boundary. Recall that the drive, or free energy, for the
tearing mode comes from the outer region. If conducting boundaries are placed at
x = ±L , they will inhibit the bending of the field lines in the outer region that
accompanies the formation of magnetic islands. If they are placed close enough
to the singular surface, an unstable mode with wave number k can be completely
stabilized. This effect is obviously minimized at long wavelength.

The transition from a state with no magnetic islands to one containing magnetic
islands can be thought of as an example of neighboring equilibria. Consider two
equilibrium states that satisfy the boundary conditions, one with magnetic islands
and one without. Let the state without magnetic islands have energy W1, and the
state with magnetic islands have W2, and let the system initially be in the state
without islands. The system wants to be in the minimum energy state. If W1 > W2,
the system would prefer to be in state 2, with islands. However, this transition is
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forbidden by the ideal MHD constraints on the invariance of the magnetic topology.
In resistive MHD, such a transition is possible. This situation has been analyzed,
and it turns out that the energy of such equilibria depends on the parameter Δ′.
When Δ′ < 0, then W1 < W2 and the state without islands is the preferred state;
when Δ′ > 0, then W1 > W2 and the state with islands is preferred. But Δ′ > 0
is just the instability criterion for the tearing mode derived in Lecture 34, so the
problems of stability to small perturbations and the energy of neighboring equilibria
are equivalent in this regard.

The mathematical theory of resistive instabilities relies on the method of matched
asymptotic expansions. This is a method for obtaining an approximate solution to
a boundary-value problem with an ordinary differential equation whose highest
derivative is multiplied by a small parameter.2 For example, consider the equation

ε
d2u

dx2
+ (1 + ε)

du

dx
+ u = 0, (35.10)

with ε << 1, subject to the boundary conditions u (0) = 0 and u (1) = 1. One is
tempted to set ε = 0 and solve the simpler equation

du

dx
+ u = 0. (35.11)

However, Eq. (35.11) is of lower order than Eq. (35.10), and therefore requires
only a single-boundary condition, whereas the solution of Eq. (35.10) requires two
boundary conditions. For Eq. (35.11), the boundary condition corresponding to a
non-trivial solution is u (1) = 1. Therefore, the condition u (0) = 0 imposed on
u (x) cannot be satisfied by the solution of Eq. (35.11). Put in another way, if u (x, ε)
is a solution Eq. (35.10) and u (x, 0) is a solution of Eq. (35.11), then

lim
ε→0

u (x, ε) �= u (x, 0) . (35.12)

This is an example of non-uniform convergence and is illustrated in Fig. 35.1.
In Lecture 34, we showed that the perturbed velocity satisfies Eq. (34.18), which

can be rewritten as

η

(
d2Vx1

dx2
− k2Vx1

)
− k2 B2

0

γρo
Vx1 = ik

γρo

(
γ − η

μ0

B ′′
0

B0

)
Bx1(0). (35.13)

The small parameter η multiplies the highest derivative; if η = 0 we have ideal
MHD. In light of Eq. (35.12), we see that the solution of the resistive MHD equa-
tions in the limit η → 0 does not approach the solution of the ideal MHD equations.

2 For an in-depth presentation of these techniques, including the example given here, see C. M.
Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer,
New York (1999).
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Fig. 35.1 Illustration that the
limit of u(x, ε) as ε → 0 does
not equal to u(x, 0)

The ideal MHD equations require fewer boundary conditions. The tearing mode still
exists in the limit η → 0, but it does not exist in ideal MHD.

We now return to the boundary-value problem given by Eq. (35.10) and follow-
ing. Since ε << 1, we expect solutions of Eqs. (35.10) and (35.11) to be almost
equal except where

∣∣u′′∣∣ ∼ 1/ε >> 1. From Fig. 35.2, we see that this will occur
in a small region near x = 0, where the solutions must rapidly diverge in order for
u (x, ε) to satisfy the boundary condition at u (0) = 0. We anticipate the region of
disagreement to scale like Δx ∼ εα. Since this occurs near a boundary, the region
Δx is called a boundary layer.

We can obtain an approximate solution of Eq. (35.10) by dividing the problem
into two regions:

1. An outer region, x > εα , where u = u (x, 0), which satisfies u′ + u = 0 with
u (1, 0) = 1.

2. An inner region, x < εα , where u = u (x, ε), which satisfies εu′′ + (1 + ε) u ′ +
u = 0 with u (0, ε) = 0.

These solution must be matched at x ∼ εα .
The solution in the outer region is u (x, 0) = e1−x . In the inner region, it is useful

to rescale the independent variable as ξ = x/ε. Then Eq. (35.10) becomes

Fig. 35.2 Anticipated
behavior of the solution of
Eq. (35.10), showing the thin
boundary layer near x = 0
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1

ε

d2u1

dξ2
+ 1

ε
(1 + ε)

du1

dξ
+ u1 = 0, (35.14)

If we now let ε → 0 and integrate, we have

du1

dξ
+ u1 = C, (35.15)

where C is a constant of integration. The solution of Eq. (35.15) that satisfies
u1 (0) ≡ u (0, ε) = 0 is

u1 (ξ ) = C
(
1 − e−ξ

)
. (35.16)

The key step in the method is to require that

lim
ξ→∞

u1 (ξ ) = lim
x→0

u (x, 0) . (35.17)

This is often stated as the outer limit of the inner solution equals the inner limit
of the outer solution. Applying Eq. (35.17) results in C = e, so that u1 (x) =
C
(
1 − e−x/ε

)
. The approximate solution of the boundary-value problem is then

ũ (x, ε) = u (x, 0) + u1 (x) − u (0, 0) . (35.18)

We must subtract the common value of the two solutions at x = 0 and ξ → ∞ to
assure that the solution is continuous. The result is

ũ (x, ε) = e
(
e−x − e−x/ε

)
. (35.19)

Actually, in this example Eq. (35.19) satisfies the differential equation (35.10)
exactly. However, ũ (1, ε) = 1−e1−1/ε �= 1, so that the boundary condition at x = 1
is not satisfied. It is therefore only an approximate solution of the boundary-value
problem. Nonetheless, lim

ε→0
ũ (1, ε) = 1, so that the approximate solution converges

to the actual solution in the proper limit.
In this case, it is possible to obtain an exact solution of the boundary-value prob-

lem as u (x, ε) = e
(
e−x − e−x/ε

)
/
(
1 − e1−1/ε

)
. The difference between this exact

solution and the approximate solution of Eq. (35.19) is sketched in Fig. 35.3.
Recall that in our analysis of the tearing mode, we found that the ideal MHD

solution has a discontinuity Δ′ in its first derivative at x = 0 and that this must
be matched to the resistive solution in a thin resistive layer about x = 0. This
layer is equivalent to the “boundary layer” in the above example (even though it
does not occur at a boundary). Furth, Killeen, and Rosenbluth used the method
of matched asymptotic expansions to solve this problem. The lower-order ideal
MHD equations are valid in the outer region. The higher-order resistive equations
are valid in the inner region. In the inner region the equations are rescaled and
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Fig. 35.3 Exact solution
(solid line) and approximate
solution (dashed line) of
Eq. (35.10)

solved. The solutions in the inner and outer regions are then matched by requir-
ing Bx1 (|ξ | → ∞)inner = Bx1 (|x | → 0)outer and Δ′

inner = Δ′
outer. The mathematics

required to solve the equations in the inner region is quite complicated, involving
expansions in Hermite polynomials, etc. Nonetheless, the approach is as given here
and results in the scaling laws given by Eqs. (35.1) and (35.2).

Of course, this can all be done in toroidal geometry. Then the criterion for insta-
bility becomes Δ′ > Δ′

C > 0, so that toroidal geometry is actually stabilizing.
Finally, we comment on nonlinear effects on the growth of the tearing mode. In

the linear regime the initial island width W , defined in a previous lecture, is much
smaller than the layer width εa, and the mode grows exponentially. However, it
turns out that, when W ≈ εa, there are nonlinear J×B forces that oppose the island
growth, and these must compete with the drive of the linear instability. The result is
that when the island width becomes comparable to or larger than the width of the
resistive layer, the island width grows as

dW

dt
= 1.22ηΔ′ (35.20)

or W ∼ ηΔ′t ; exponential growth ceases and the island grows linearly in time with
a rate proportional to the resistivity or 1/S. Equation (35.20) is called the Rutherford
equation.3 Further analysis4 reveals that

dW

dt
= 1.22η

[
Δ′ (W ) − αW

]
, (35.21)

where Δ′ (W ) is now a function of W and α depends on equilibrium parameters.
The island stops growing (saturates) when Δ′ (W ) − αW = 0, which can be solved
for the saturated island width.

3 P. H. Rutherford, Phys. Fluids 16, 1903 (1958).
4 R. B. White, D. A. Monticello, M. N. Rosenbluth, and B. V. Waddell, Phys. Fluids 20, 800
(1977).
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Lecture 36
Turbulence1

Abandon hope, all ye who enter here.
Dante, The Divine Comedy

Suppose we set up an experiment in which we can control all the mean parameters.
An example might be steady flow through a pipe, where we can control the mean
velocity V̄ . Now insert a probe, or some such measuring device, at a fixed location
far from the boundaries and measure the flow velocity as a function of time. The
result of this measurement might look something like Fig. 36.1.

Fig. 36.1 Measurement of a
fluctuating velocity field

All measurements are taken under identical conditions. However, the results of
the measurements at different times are not the same. Instead, we find that the veloc-
ity takes on random values. Although V̄ (the average) is determined precisely by the
controllable conditions, the random values are not. Fluctuating motions of this kind
are said to be turbulent.

The random fluctuations in V have a probability distribution with a mean value
V̄ , as shown in Fig. 36.2.

1 This lecture is greatly influenced by G. K. Batchelor, The Theory of Homogenous Turbulence,
Cambridge University Press, Cambridge, UK (1953), and Dieter Biskamp, Magnetohydrodynamic
Turbulence, Cambridge University Press, Cambridge, UK (2003). The thorough reading and con-
structive comments of P. W. Terry are gratefully acknowledged.

Schnack, D.D.: Turbulence. Lect. Notes Phys. 780, 219–240 (2009)
DOI 10.1007/978-3-642-00688-3 36 c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 36.2 Probability
distribution for the velocity
fluctuations shown in
Fig. 36.1

The function P(V ) is called the probability distribution function (PDF). If the
fluctuations are truly random,2 the PDF is Gaussian. If the PDF and V̄ are inde-
pendent of the position, the turbulence is said to be homogeneous. If the PDF is
independent of arbitrary rotations of the system, and of reflections about any plane,
the turbulence is said to be isotropic. Isotropic turbulence has no preferred direction
in space. If the random flow looks the same on all spatial scales, the turbulence is
said to be self-similar (or scale invariant). A rigorous theoretical study of turbulence
requires a statistical description. Here we will not go that far. Rather, we will give
a heuristic treatment of these fluctuations that nonetheless yields important insights
about the properties of turbulence.

Now, suppose we initialize the system with long wavelength, steady, smooth con-
ditions. For example, consider the stirring of a perfect cup of coffee with a perfect
spoon. The perfect cup is an infinitely long cylinder of radius a with no boundary
perturbations, and the perfect spoon excites only a single circular eddy with velocity
Vstir and radius a, as shown in Fig. 36.3.

Fig. 36.3 The flow resulting
from a perfect cup stirred
perfectly by a perfect spoon

2 Random fluctuations are said to be Markovian, meaning that there is no correlation between
them; they are completely independent. In turbulence, the fluctuations may be correlated to some
degree, meaning that the value of one measurement may depend in some way on the value of
previous measurements. This can lead to non-Gaussian statistics.
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The stirring is continued until the system reaches steady state. Then the velocity
is measured at the probe position shown in Fig. 36.3. The result looks like Fig. 36.1,
with V̄ = Vstir. The question is, how did these small-scale random fluctuations come
about if only the longest wavelength is excited by the stirring of the spoon?

The answer is that the fluctuations arise because of the nonlinearities in the fluid
equations.3 In the absence of pressure forces, and with constant density, the evolu-
tion of the velocity is governed by the equation of motion

∂V

∂t
+ V

∂V

∂x
= ν

∂2V

∂x2
, (36.1)

where ν is the viscosity. The second term on the left-hand side is nonlinear, con-
taining the product of the velocity and its derivative. Consider the effect of this
term on the evolution of V . At t = 0 the velocity is given by V (0) = V0 sin k0x ,
where k0 = π/a (or wavelength λ0 = 2a). We suppose that the Reynolds’ number
Re = V0a/ν � 1, so that we neglect the effects of viscosity at long wavelengths.
Then at t = Δt � 1/k0V0, a short time later, the velocity is

V (Δt) = V (0) − ΔtV
∂V

∂x
= V0 sin k0x − Δt (V0 sin k0x) (k0V0 cos k0x)

= V0 sin k0x − 1

2
k0ΔtV 2

0 sin 2k0x . (36.2)

The new velocity has a component whose wave number is k1 = 2k0 or wavelength
λ1 = a = λ0/2; it has half the wavelength of the driven input velocity. The motion
now contains the original eddy plus eddies that are half the size, as shown schemat-
ically in Fig. 36.4.

Fig. 36.4 Creation of smaller
eddies after a short increment
of time

3 It is important to recognize that the eddies to be described here are also nonlinearly unstable.
In hydrodynamics this is due to the Kelvin—Helmholtz instabilty, which derives its free energy
from sheared flow. In MHD, this is modified by the presence of the magnetic field. This instability
accounts for the observed dynamical variability of turbulent flow.
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Note that the velocity of the smaller eddies is V1 = k0ΔtV 2
0 /2 � V0, since

we have assumed that k0V0Δt � 1. The flow at t = Δt is still dominated by the
large eddy, but has a small component with half the wavelength superimposed on it.
Similarly, at time t = 2Δt , the velocity is

V (2Δt) = V (Δt) − ΔtV
∂V

∂x
= V0 sin k0x − V1 sin 2k0x

− Δt (V0 sin k0x − V1 sin 2k0x)
∂

∂x
(V0 sin k0x − V1 sin 2k0x)

= (V0 − 3ΔtV1V0) sin k0x

− (V1 + k0ΔtV 2
0

)
sin 2k0x (36.3)

+ 3Δtk0V1V0 sin 3k0x

− 2Δtk0V 2
1 sin 4k0x .

The first two terms on the right-hand side are modifications to the eddies with
λ0 = 2a and λ1 = a, respectively. The last two terms are new eddies with smaller
wavelengths. The amplitudes of eddies (i.e., the flow velocity associated with the
eddies) with successively smaller wavelength are successively smaller. The flow
remains dominated by the largest eddy with wavelength λ0 = 2a, whose ampli-
tude is slightly modified from the input value, plus a superposition of successively
smaller and slower eddies with wavelengths, given by

λ1 = 2π

k1
= 2π

2k0
= 2π

2 (π/a)
= a, (36.4)

λ2 = 2π

k2
= 2π

3k0
= 2π

3 (π/a)
= 2

3
a, (36.5)

and

λ3 = 2π

k3
= 2π

4k0
= 2π

4 (π/a)
= 1

2
a. (36.6)

The process described above continues at each successive time step; at each step,
new eddies with shorter wavelength and smaller amplitude are generated. If contin-
ued indefinitely, eddies with arbitrarily small wavelengths (large wave numbers) will
be generated.4 This is inevitable and accounts for the small-scale random velocities
that occur in the measurements. Since the amplitude of the small eddies decreases

4 This analysis is meant to be heuristic, and not a recommendation for further analysis. As stated,
it applies only to very short times, and we are generally interested in the time asymptotic behavior
of the flow.



www.manaraa.com

36 Turbulence 223

with wave number k, a plot of ε(k), the energy in an eddy with wave number k,
versus k might look something like Fig. 36.5.

Fig. 36.5 Illustration of the
cascade of energy from large
to small wavelength as a
result of nonlinear mode
coupling

Energy is continually input at wave number k0. It is continually spread to higher
and higher k (to smaller and smaller eddies) as a result of the nonlinear interactions
described above. This is called a cascade. The cascade of energy to higher k will
continue indefinitely unless other processes intervene.

The cascade will be unable to continue when the magnitude of the viscous term
[the term on the right-hand side of Eq. (36.1)] becomes comparable with the non-
linear term, for then ∂V/∂t ≈ 0 and the process described above can no longer
operate. We therefore require V ∂V/∂x ≈ ν∂2V/∂x2. With V ≈ Vk exp (ikx) and
∂/∂x → ik (where Vk is the velocity of the eddy with wavelength λk = 2π/k), this
will occur at a wave number such that Vk ≈ νk or

Vk

kν
≈ Vkλk

ν
≈ 1. (36.7)

We recognize the expression Reλk = Vkλk/ν as the Reynolds’ number associated
with the kth eddy. The cascade will cease when Reλk ≈ 1 or

k ≈ kD ≡ |Vk |
ν

; (36.8)

kD is called the dissipation wave number.
The qualitative picture of steady-state turbulence is therefore as follows. Energy

is continually input at a small wave number k0. As a result of nonlinearities in the
governing dynamical equations, this energy cascades to higher and higher wave
number, producing eddies with smaller and smaller amplitude. The cascade will
cease when k approaches kD, where dissipation can compete with the nonlinearity.
All the energy that is input at k ≈ k0 is dissipated near k ≈ kD; this is called the
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dissipation range. The energy simply moves through the intervening wave numbers.
The range k0 < k < kD is called the inertial range, for it is dominated by dV/dt ≈ 0
(the Lagrangian derivative) and dissipation plays no role. We may therefore expect
the energy spectrum to look something like what is sketched in Fig. 36.6.

Fig. 36.6 The spectrum of
turbulence, showing the
inertial range and the
dissipation range

This plot is said to display the spectrum of turbulence.
Now, it is fair to ask why we should care about all of this. The spoon still stirs

the cup, and the mean values of the flow, which are presumably what we care
about, are repeatable from experiment to experiment. The answer is that these very
small-scale fluctuations affect the evolution of the mean quantities. Recall that the
Reynolds’ number at the scale of the mean flow is much more greater than one. If
we only concentrated on the mean flow, we might anticipate that there would be
very little dissipation in the system. However, we know that, in steady state, all of
the energy that is input at the large scales must be dissipated, and at the same rate
that it is input; it is just dissipated at the small scales. The system adjusts to make
this happen. The effective dissipation rate is much larger than one might conclude
from considerations of the largest eddies alone. Therefore, we cannot understand
the dissipative properties of the system without including effects of the turbulence.
Further, the turbulent eddies provide a much more effective mechanism for mixing
and transport within the system than might be deduced from the material properties
of the fluid alone; the cream is more effectively mixed with the coffee because of
the turbulence.

These properties can be demonstrated if we assume that kD � k0, i.e., there is
a large-scale separation between the length scales at which energy is input and the
length scales at which it is dissipated. We can then write any physical quantity

u (x, t) = 〈u (x, t)〉 + ũ (x, t) . (36.9)
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where 〈u (x, t)〉 is a long wavelength “mean” value and ũ (x, t) is a random,
small scale “fluctuating” component.5 These have the properties that 〈〈u (x, t)〉〉 =
〈u (x, t)〉 and 〈ũ (x, t)〉 = 0.

The incompressible hydrodynamic equations of motion (with constant density,
which we arbitrarily set to 1) are

∂V
∂t

+ V · ∇V = −∇ p + ν∇2V (36.10)

and

∇ · V = 0. (36.11)

[As an aside, we remark that Eq. (36.11) serves as a closure; the divergence of
Eq. (36.10) yields

∇2 p = −∇ · (V · ∇V) , (36.12)

which is a Poisson equation that determines the pressure. Solutions of Eq. (36.12)
assure that the velocity remains solenoidal. Equation (36.12) is thus the “equa-
tion of state” for incompressible flows.] Substituting the ansatz of Eq. (36.9) into
Eqs. (36.10) and (36.11), we have

∂

∂t

(〈V〉 + Ṽ
)+ (〈V〉 + Ṽ

) · ∇ (〈V〉 + Ṽ
) = −∇ (〈p〉 + p̃) + ν∇2

(〈V〉 + Ṽ
)
,

(36.13)

∇ · 〈V〉 = 0, (36.14)

and

∇ · Ṽ = 0. (36.15)

Equation (36.13) can be expanded as

∂

∂t

(〈V〉 + Ṽ
)+ 〈V〉 · ∇ 〈V〉 + 〈V〉 · ∇Ṽ + Ṽ · ∇ 〈V〉 + Ṽ · ∇Ṽ

= −∇ (〈p〉 + p̃) + ν∇2
(〈V〉 + Ṽ

)
. (36.16)

Equation (36.16) contains both mean and fluctuating parts. We can obtain an
equation for the evolution of the mean flow alone by operating on Eq. (36.16) with
the “mean operator” 〈. . .〉, and using the properties following Eq. (36.9):

5 This implies a large separation of both space and time scales between the mean and fluctuating
parts of the flow.
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∂ 〈V〉
∂t

+ 〈V〉 · ∇ 〈V〉 + 〈Ṽ · ∇Ṽ
〉 = −∇ 〈p〉 + ν∇2 〈V〉 . (36.17)

Since ∇ · Ṽ = 0, we can write Ṽ · ∇Ṽ = ∇ · (ṼṼ
)
, so that Eq. (36.17) becomes

∂ 〈V〉
∂t

+ 〈V〉 · ∇ 〈V〉 = −∇ 〈p〉 + ∇ · [− 〈ṼṼ
〉+ ν∇ 〈V〉] . (36.18)

The mean pressure is to be determined by the condition ∇ · 〈V〉 = 0. We note that
there is an additional contribution − 〈ṼṼ

〉
to the stress tensor for the mean flow.

This term encapsulates the enhanced dissipation that results from the presence of
the fluctuating component Ṽ. This term is second order in the fluctuating velocity.

An equation for the fluctuating part of the velocity can be obtained by subtracting
Eq. (36.18) from Eq. (36.16). The result is

∂Ṽ
∂t

+ 〈V〉 · ∇Ṽ + Ṽ · ∇ 〈V〉 + Ṽ · ∇Ṽ = −∇ 〈p〉 + ν∇2Ṽ. (36.19)

The time rate of change of ṼṼ can be found by forming the combination

∂

∂t
ṼṼ = Ṽ

∂Ṽ
∂t

+ ∂Ṽ
∂t

Ṽ. (36.20)

After much algebra, the result is

∂

∂t
ṼṼ = −〈V〉 [∇ · (ṼṼ

)]− [∇ · (ṼṼ
)] 〈V〉

− ∇ · (〈V〉 ṼṼ + Ṽ 〈V〉 Ṽ + ṼṼ 〈V〉 + ṼṼṼ
)

− ∇ ( p̃Ṽ
)+ p̃∇Ṽ − [∇ ( p̃Ṽ

)− p̃∇Ṽ
]T

+ ν
[∇2ṼṼ − 2

(
Ṽ∇) · (∇Ṽ

)]
.

(36.21)

As we can see, turbulence becomes very messy very quickly! [Here the notation is(
Ṽ∇) · (∇Ṽ

) ≡ (∂l Ṽi
) (

∂l Ṽ j
)
.] When we take the average of Eq. (36.21), we obtain

an equation for
〈
ṼṼ
〉

that has the form

∂

∂t

〈
ṼṼ
〉 = (terms containing 〈V〉, 〈ṼṼ

〉
, and

〈
p̃Ṽ
〉)− ∇ · 〈ṼṼṼ

〉
. (36.22)

The equation for the second-order moment
〈
ṼṼ
〉

contains the third-order moment〈
ṼṼṼ

〉
! If this procedure were carried further, we would find that the equation for〈

ṼṼṼ
〉

contains
〈
ṼṼṼṼ

〉
, and so on to infinity. This is formally identical to the

closure problem that was discussed in a Lecture 7; there are always more unknowns
than equations.
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A central part of turbulence theory is obtaining expressions for
〈
ṼṼ
〉

in terms
of 〈V〉 and 〈p〉. For example, one form of a closure relation for incompressible
hydrodynamics is

〈
ṼṼ
〉 = 1

3

〈
Ṽ 2
〉
I − νT

(∇ 〈V〉 + ∇ 〈V〉T
)
. (36.23)

Here νT is a turbulent viscosity. It is sometimes called the eddy viscosity, since it is
due to the small-scale turbulent eddies. Then the mean flows evolve according to

∂ 〈V〉
∂t

+ 〈V〉 · ∇ 〈V〉 = − ∇ ·
(

〈p〉 + 1

3

〈
Ṽ 2
〉)

I

+ ∇ · [(ν + νT)
(∇ 〈V〉 + ∇ 〈V〉T

)]
.

(36.24)

The turbulence produces both an addition to the isotropic pressure force and an
enhanced dissipation rate. One form of the turbulent viscosity is

νT = Ṽ lm, (36.25)

where Ṽ is the approximate amplitude of the fluctuating velocity and lm is a
length scale that represents the distance momentum is transported during one “eddy
turnover time.” i.e., the time it takes the largest scale eddy to make a single cir-
culation; lm is called the mixing length. If we assume

∣∣∇Ṽ
∣∣ ∼ |∇ 〈V〉|, so that

Ṽ / lm ∼ |d 〈V 〉 /dx |, then νT = l2
m |d 〈V 〉 /dx |. This is very approximate. In prac-

tical use, lm is considered an “adjustable” parameter that is determined by the fit to
data, etc.

As we can see, the problem of turbulent closure is very difficult. It is therefore
interesting that significant insight into the properties of the turbulent spectrum can
be simply obtained from a dimensional analysis. The theory is due to Kolmogorov,6

and the results are called Kolmogorov turbulence.
We let l be the size of the largest eddy, u be the mean velocity, and Δu be the

variation of u over a distance l. The frequency of the largest eddy is u/ l; this is the
inverse of the eddy turnover time. This frequency determines the period with which
the flow pattern repeats itself when viewed from a fixed frame of reference;7 with
respect to such a system, the entire flow pattern moves with the mean velocity u.

Let λ be the size of an eddy and Vλ be the velocity associated with that eddy.
Then the Reynolds’ number associated with this scale of the flow is

6 Our presentation of Kolmogorov turbulence follows L. D. Landau and E. M. Lifschitz, Fluid
Mechanics, Pergamon Press, London, UK (1959).
7 This is not to imply that anything about the turbulence is “periodic.” Large eddies are observed
appear and disappear dynamically. The eddy turnover time is often defined as the mean lifetime,
or de-correlation time, of the large eddies.
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Reλ = Vλλ

ν
. (36.26)

We assume that for the large eddies, Reλ � 1, so that no dissipation occurs at this
scale. We define λ0 as the scale where Reλ ≈ 1. Dissipation occurs at this scale.

As we discussed previously, while dissipation is ultimately due to viscosity, its
value (or magnitude) derives from the large eddies where the energy input occurs. In
steady state, the energy dissipation rate is essentially independent of viscosity and
must depend only on the properties of the large eddies. These are characterized by
l, Δu, and the fluid density ρ. Let ε be the mean dissipation rate per unit time per
unit mass of fluid. It has units of Joules/sec/kg or L2/T 3. Since ε can depend only
on the large eddies, it can depend only on ρ, l, and Δu. We therefore write

ε ∼ ραlβΔuγ (36.27)

or

L2

T 3
=
(

M

L3

)a

Lβ

(
L

T

)γ

. (36.28)

Equating exponents on each side, we find α = 0, β = −1, and γ = 3, so that

ε ≈ (Δu)3

l
. (36.29)

This sets the order of magnitude of energy dissipation in turbulent flow.
We now assume that, at least in the inertial range, the turbulence is self-similar,

i.e., the local properties of the turbulence are independent of l and Δu (which char-
acterize the large eddies). Therefore, the velocity Vλ of an eddy of size λ can only
depend on ρ, ε, and λ. Proceeding as before, we find

Vλ ≈ (ελ)1/3 = Δu

(
λ

l

)1/3

(36.30)

or, in terms of the wave number k, Vk ≈ ε1/3k−1/3. This is called Kolmogorov and
Obukhov’s law: the variation of velocity over a small distance is proportional to the
cube root of the distance. The energy per unit wave number is ek ≈ d Ek/dk ≈∣∣V 2

k

∣∣ /k, where Ek is the energy in an eddy with wave number k. Then using
Eq. (36.30) and following, we have for the inertial range,

ek ≈ ε2/3k−5/3. (36.31)

This is the famous Kolmogorov spectrum. If plotted using a log–log scale, the slope
of the line in the inertial range in Fig. 36.6 is −5/3. This simple estimate turns out
to be remarkably accurate for hydrodynamic turbulence.
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Using Eqs. (36.29) and (36.30), the Reynolds’ number, Eq. (36.26), at scale λ is
Reλ ≈ Δuλ4/3/(l1/3ν). But Re = lΔu/ν is the Reynolds’ number that characterizes
the large-scale eddies. We can therefore write

Reλ =
(

λ

l

)4/3

Re. (36.32)

Dissipation occurs at λ0 when Reλ ≈ 1 or

λ0

l
≈ Re−3/4. (36.33)

This is very small if Re � 1.
In terms of the dissipation wave number kD, defined previously, we have kD/kin ≈

Re3/4, where we have called kin the wave number where the energy is input
(i.e., where the cup is stirred). Using Eq. (36.33) and the second equality in
Eq. (36.30), we have that the ratio of the energy in the smallest and largest eddies
is
∣∣V 2

λ

∣∣ / ∣∣Δu2
∣∣ ≈ Re−1/2. Using these results, the Kolmogorov spectrum is roughly

sketched in Fig. 36.7.

Fig. 36.7 The Kolmogorov
spectrum for fully developed
turbulence, showing the
scaling of the various regions

Let n be the number of “degrees of freedom” per unit volume in the turbulent
flow. This is approximately the number of eddies or number of spatial scales, per
unit volume, associated with the flow. It has units of L−3. It can depend on the
density ρ, the rate of energy input ε, and the size of the smallest scale, which in
turn depends on the viscosity. Dimensional analysis then yields n ≈ (ε/ν3

)3/4
. But

ε ≈ Δu3/ l and ν = lΔu/Re, so that n ≈ (Re3/4/ l
)3 = 1/λ3

0. The total number of
degrees of freedom is just N = nl3, so that

N ≈ Re9/4 (36.34)

or about Re3/4 degrees of freedom per spatial dimension.
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This last result has important consequences for numerical simulation of flows
at large Reynolds’ number. Based on Eq. (36.34), an approximate rule of thumb is
that it requires ∼ Re pieces of information per spatial dimension to model turbulent
flow accurately. For computer simulation, this translates into mesh points or Fourier
modes. Simulation of flows with Re ∼ 104 (very large by present state-of-the-art
computational standards, but quite moderate physically) therefore requires approx-
imately 103 mesh points in each spatial dimension or more than 109 total mesh
points. Increasing the Reynolds’ number by a factor of 10 requires increasing the
total number of mesh points by a factor of almost 103 (104 if factors related to
numerical stability are taken into account). One quickly reaches the limits of any
present or foreseeable computer technology.

In this discussion, we have explicitly assumed that that the turbulence is self-
similar, i.e., that the eddies look the same on all scales. That this may not be the
case can be seen from looking at Burger’s equation, which in one dimension is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (36.35)

This model equation [which is identical to Eq. (36.1)] contains the essential non-
linearity (the second term) and dissipation (the right-hand side) that play important
roles in turbulence theory. (Note, however, that, since ∂u/∂x �= 0, u cannot be inter-
preted as the x-component of an incompressible velocity field.) Since small-scale
structures develop dynamically from the large-scale initial conditions, the behavior
of structures at small scales (i.e., as k → ∞) can be examined by setting ν = 0
and looking at the time development of the solution from some initial condition.
Defining ω = ∂u/∂x , the x-derivative of Eq. (36.35) is

∂ω

∂t
+ u

∂ω

∂x
= −ω2. (36.36)

The left-hand side is just the total time derivative of ω[x(t)] along the trajectory
dx/dt = u. Equation (36.36) can then be integrated to give the solution

ω[x(t)] = 1

t − t0
. (36.37)

Therefore, the slope of the function u (analogous to the vorticity of a fluid with
velocity u) becomes infinite in a time Δt ∼ 1/ω0, where ω0 represents the initial
condition. This is called a finite time singularity (FTS): the solution becomes infinite
in a finite time. This is to be contrasted with exponential behavior ω ∼ eγ t , which
has a large but still finite value at all (finite) times. This example suggests (but does
not prove) that as k → ∞ in fluid turbulence, the vorticity in the small eddies may
become spatially concentrated, and possibly singular (at least theoretically), being
drawn into thinner and thinner strands, sheets, or filaments, as the turbulent state is
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approached. In any case, the flow may not look the same at all scales; it may not be
self-similar.

Attempts to determine whether fluid turbulence exhibits FTS behavior have
proven problematical and inconclusive. Consider, for example, two-dimensional,
incompressible fluid turbulence, which is governed by the equations

∂V
∂t

+ V · ∇V = −∇ p (36.38)

and

∇ · V = 0, (36.39)

where V = Vx êx + Vy êy and ∂/∂z = 0. These can be written in terms of the
z-component of the vorticity, ω = êz · ∇ × V, and the velocity potential, defined by
V = êz × ∇φ, as

∂ω

∂t
+ V · ∇ω = 0 (36.40)

and

∇2φ = ω. (36.41)

Equation (36.40) states that the vorticity is constant along the trajectory of a fluid
element. There is no term on the right-hand side to drive singular behavior as there
is in the case of Burger’s equation. Therefore, an FTS does not exist in planar,
two-dimensional, incompressible fluid turbulence.

The situation is somewhat different if the two-dimensional flow has symmetry
about an axis. We consider such a case in cylindrical geometry. The velocity is V =
VP(r, z) + Vθ (r, z)êθ , where VP = Vr êr + Vz êz is the poloidal velocity. Operating
on Eq. (36.38) with êz · r×, we find

(
∂

∂t
+ VP · ∇

)
r Vθ = 0, (36.42)

so that Lz = r Vθ , the axial component of the angular momentum, is constant along
the trajectory of a fluid particle. There is no FTS associated with angular momentum
(a result that could be anticipated by the symmetry of the stress tensor). However,
subtracting êr · ∂/∂z from êz · ∂/∂r of Eq. (36.38), we find, after rearranging some
terms,

(
∂

∂t
+ VP · ∇

)
ω

r
= − 1

r4

∂

∂z
L2

z , (36.43)
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where now ω = êθ · ∇ × V is the poloidal component of the vorticity. The inhomo-
geneous term on the right-hand side offers the possibility of an FTS in the vorticity
of the poloidal flow. But its existence cannot be proven.

So far our approach has been analytic. Another approach to studying the prop-
erties of complex systems such as turbulent flows is to use numerical simulation.
Unfortunately, numerical solutions are limited to finite values of the variables and to
finite (as opposed to infinitesimal) sizes of spatial structures. Further, several types
of numerical (as opposed to physical) instabilities are known to lead to solutions
that behave like Eq. (36.37), i.e., they go to infinity (really, generate numbers larger
than can be represented on a digital computer) in a finite (as opposed to exponential)
time. So, it is not surprising that attempts to settle the question of FTS in hydrody-
namic turbulence by means of direct numerical simulation of Eqs. (36.40, 36.41)
have been inconclusive.8 What seems clear is that the vorticity does tend to become
concentrated in filamentary structures at the smallest scales that can be resolved.

Further, there are some indications (although not general conclusions) that an
FTS may occur in three-dimensional flows. An equation for the vorticity ω = ∇×V
is found by taking the curl of Eq. (36.38). Since V · ∇V = ∇(V 2/2) − V × ω and
∇ · V = ∇ · ω = 0, we have ∇ × (V · ∇V) = −∇ × (V × ω) = −ω · ∇V + V · ∇ω,
so that

∂ω

∂t
+ V · ∇ω = ω · ∇V. (36.44)

The left-hand side is the advection of the vorticity with the motion of the fluid ele-
ment. The right-hand side is called the vorticity stretching term. It results from the
projection of the rate of strain tensor ∼ ∇V (see Lecture 7) in the direction of the
vorticity ω. It clearly vanishes for two-dimensional planar flows [see Eq. (36.40)].
In three dimensions, it serves as a source of vorticity at small scales and may result
in a singularity. This tendency is borne out by numerical simulation. Whether this
actually occurs in finite or exponential time seems moot, since in any physical sys-
tem dissipation will intervene before the singularities can develop. What does seem
to be important is the formation of filamentary structures at small scales, where the
energy is dissipated; the turbulence is not self-similar. This may affect the proper-
ties of the PDF and the spectrum of turbulence, and hence the associated turbulent
transport. Of course, as discussed previously, in steady state the dissipation rate is,
by definition, equal to the input rate and is therefore independent of the viscosity.

Now, how is all this related to MHD? The answer is that nobody really knows,
although there are many ideas.9 MHD turbulence certainly may have different prop-
erties than hydrodynamic turbulence. For one thing, the magnetic field provides a
preferred direction in space, so the turbulence will no longer be isotropic. We have

8 See Dieter Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press,
Cambridge, UK (2003), pp. 34ff.
9 See, for example, Dieter Biskamp, Magnetohydrodynamic Turbulence, Cambridge University
Press, Cambridge, UK (2003), from which this discussion follows.
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seen (for example, Lectures 13 and 32) that motions, or eddies, tend to stretch out
along field lines, so that k⊥ � k‖, as sketched in Fig. 36.8.

Fig. 36.8 In MHD
turbulence, the eddies tend to
be elongated in the direction
of the magnetic field

When the mean field is much larger than the fluctuating field, we might expect the
turbulence to be approximately two-dimensional on the plane perpendicular to 〈B〉.

From Eq. (36.29), the size of an eddy is approximately l ∼ Δu3/ε. If we take
Δu ≈ VA, then L = V 3

A/ε is called the “integral scale” for MHD turbulence. It
turns out that, for a given eddy,

k⊥
k‖

≈ (Lk⊥)1/3 , (36.45)

so that MHD turbulence becomes more anisotropic as k⊥ increases. The perpendic-
ular energy spectrum remains Kolmogorov-like,

ek⊥ ≈
(

V 3
A

L

)2/3

k−5/3
⊥ . (36.46)

However, the parallel spectrum differs from Kolmogorov:

ek‖ ≈ ε3/2V −5/2
A k−5/2

‖ . (36.47)

MHD turbulence does not appear to be self-similar. In MHD we know that the
eddies are stretched out along the magnetic field and that this anisotropy increases at
smaller scales [see Eqs. (36.46, 36.47)]. Thus the small scales are more “stretched”
than the large scales, and the stretching changes with increasing k⊥. This is mani-
fested in the structure of the current density J̃ at small scales. At these scales, the
magnetic flux tends to get “squeezed” by the eddies to form long, thin current fila-
ments. An example of filamentary spatial structures in hydrodynamic turbulence is
illustrated in Fig. 36.9. We might expect the current filaments in MHD turbulence
to look like this.
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Fig. 36.9 The spatial
structure at small scales in
intermittent turbulence. Note
the coherent structures
(http://www-vis.lbl.gov/
Events/SC04/Incite3/
index.html)

For self-similar turbulence the variation would be random. However, in MHD the
current appears as semi-discrete sheets or spikes. The energy is therefore dissipated
in discrete reconnection events (see Lecture 33) at small scales, rather than as a
continuous process. The turbulence is said to be intermittent. The structures at small
scales are not space filling, and the turbulence at this scale ceases to be self-similar.
This affects the PDF for the current. If the fluctuations comprising the turbulence
are random, as we assumed at the beginning of this lecture, then the PDF is a Gaus-
sian, P (ε) ∼ e−ε, where ε is the energy. It is found that in intermittent turbulence,
P (ε) ∼ e−(ln ε)2

. This differs from Gaussian primarily by having a much longer tail
at high energy, representing the relative abundance of these large-amplitude events.
Of course, the PDF affects the validity of the closure expressions that determine the
effect of the turbulence on the large-scale flows. We expect intermittent turbulence
to yield different transport properties than self-similar turbulence.

The tendency in MHD toward intermittency and spiky structures at small scales
can be illustrated by considering the Elsässer variables z± = V ± B, introduced in
Lecture 24. In terms of these variables, the incompressible ideal MHD equations are

∂z±

∂t
+ z∓ · ∇z± = −∇ P (36.48)

and

∇ · z± = 0. (36.49)

An equation for the generalized vorticity ω± = ∇ × z± = ω ± J is found by taking
the curl of Eq. (36.48). The second term can be written as



www.manaraa.com

36 Turbulence 235

z∓ · ∇z± = ∇(z± · z∓) − ∇z∓ · z± − z∓ × ω±, (36.50)

so that

∇ × (z∓ · ∇z±) = ∇ × (∇z∓ · z±) − ω± · ∇z∓ + z∓ · ∇ω±. (36.51)

The first term on the right-hand side is

∇ × (∇z∓ · z±) = εi jk∂ j
[(

∂k z∓
l

)
z±

l

] = εi jk
[(

∂k z∓
l

) (
∂ j z

±
l

)+ z±
l ∂ j∂k z∓

l

]

=
3∑

l=1

∇z±
l × ∇z∓

l + (∇ × ∇z∓) · z±. (36.52)

The last term vanishes as the curl of a gradient. The generalized MHD vorticity
equation is then

∂ω±

∂t
+ z∓ · ∇ω± = ω± · ∇z∓ +

3∑
l=1

∇z±
l × ∇z∓

l . (36.53)

It differs in form from the hydrodynamic vorticity equation, Eq. (36.44), in that it
has two terms on the right-hand side. The first is generalized vorticity stretching.
The second is new in MHD. Either term may (or may not!) lead to filamentary
structures and a possible FTS. Since the first term can be responsible for filamen-
tary structure in the vorticity, we might suspect that the second term may lead to
filamentary structure in the current density. Note that, for a two-dimensional planar
system, the vorticity stretching term vanishes as in hydrodynamics, but the second
term remains. We therefore expect MHD turbulence to differ from hydrodynamic
turbulence, even in two dimensions.

The tendency toward current sheet formation in MHD (and the associated small
scale structure in the current density) can be illustrated by considering a two-
dimensional planar system in the vicinity of an X-point (a null in the poloidal field).
In this case it is sufficient to consider the ideal reduced MHD equations [see Lec-
ture 13, Eqs. (13.29, 13.30)],

∂ψ

∂t
+ V · ∇ψ = 0 (36.54)

and

∂ω

∂t
+ V · ∇ω = B · ∇ J, (36.55)

with B = êz × ∇ψ + B0êz , V = êz × ∇φ, J = ∇2ψ , and ω = ∇2φ. [These are
equivalent to Eq. (36.53). The right-hand side of Eq. (36.55) arises from the second
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term on the right-hand side of Eq. (36.53).] In the vicinity of an X-point, the flux
function is, for example,

ψ = 1

2

(
x2

ξ 2(t)
− y2

η2(t)

)
, (36.56)

whose level curves are hyperbolae with asymptotes whose slopes are ±η/ξ . We
allow these parameters to vary with time. With this choice, J = ∇2ψ = J (t). If we
further choose

φ = Λ(t)xy, (36.57)

we have ω = ∇2φ = 0, so that Eq. (36.55) is satisfied identically. Substituting
Eqs. (36.56) and (36.57) into Eq. (36.54), and recalling that x and y are indepen-
dent variables, yields ξ̇ = −Λξ and η̇ = Λη. With the choice Λ = constant,
these have exponentially growing solutions, so that the current grows exponentially,
i.e., J ∼ eΛt . This is not an FTS, but it does indicate a tendency for the local-
ized current density to grow to large values. This exponential growth of the current
density in two-dimensional MHD turbulence has been borne out by numerical simu-
lation. There does not appear to be a true FTS in two-dimensional MHD turbulence,
although there is a tendency to form current sheets at small scale.

In three-dimensional turbulence, the properties of the structures at small scales
are determined by the balance between the two terms on the right-hand side of
Eq. (36.53). High-resolution numerical simulation of three-dimensional MHD tur-
bulence indicates an exponential growth of current sheets, rather than an FTS. These
fine scale structures seem to be a fundamental property of MHD flows.

A further property of MHD turbulence is the tendency of the flow and magnetic
field to be aligned. If one solves the variational problem of minimizing the total
energy (kinetic plus magnetic) with the constraint of constant cross-helicity (see
Lecture 12; constrained variational problems will be discussed in more detail in
Lecture 37), the result (in non-dimensional variables) is V = ±B, which must
be valid at each point in space; the velocity and magnetic field tend to become
aligned. This is called an Alfvénic state, and the tendency toward dynamic align-
ment is called the Alfvén effect. In such a state, either z+ or z− vanishes, and
Eq. (36.53) indicates that the nonlinearity in the MHD equations ceases to function.
This is sometimes called nonlinear depletion, i.e., the nonlinearities are depleted
by the dynamics. According to our discussions in Lecture 24, it also means that, at
least locally, and at this scale, all the Alfvén waves are either right or left travel-
ing; they are all propagating in the same direction and hence cannot interact with
each other. This must therefore be the final state of MHD turbulence. Numerical
simulations indicate that the MHD fluid tends to form into small regions where
the velocity and the magnetic field are either positively or negatively aligned. The
details of this state depend on the amount of energy and cross-helicity in the initial
conditions.
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Returning to the closure problem, if we again assume a separation of scales, as
in Eq. (36.9), the equations for the mean components of the velocity and magnetic
field in MHD are (in non-dimensional form)

∂ 〈V〉
∂t

+ 〈V〉 · ∇ 〈V〉 = −∇ 〈p〉 + 〈B〉 · ∇ 〈B〉 + ∇ · 〈ṼṼ − B̃B̃
〉+ ν∇2 〈V〉 (36.58)

and

∂ 〈B〉
∂t

= ∇ × (〈V〉 × 〈B〉) + ∇ × 〈Ṽ × B̃
〉+ η∇2 〈B〉 . (36.59)

Closure expressions are required for the turbulent stress
〈
ṼṼ − B̃B̃

〉
and the (nega-

tive of the) turbulent electric field
〈
Ṽ × B̃

〉
. One form of these closures is

〈
ṼṼ − B̃B̃

〉 = 1

3

〈
Ṽ 2 − B̃2

〉
I

− νV
t

[∇ 〈V〉 + (∇ 〈V〉)T
]− νM

t

[∇ 〈B〉 + (∇ 〈B〉)T
]

(36.60)

and

〈
Ṽ × B̃

〉 = αt 〈B〉 − βM
t 〈J〉 + βV

t 〈ω〉 , (36.61)

where ω = ∇×V is the vorticity, νV
t is an eddy viscosity due to velocity fluctuations,

and νM
t is an eddy viscosity due to magnetic field fluctuations.

Equation (36.61) is important. If we define the turbulent electric field as E ≡
− 〈Ṽ × B̃

〉
, then the effect of the first term in Eq. (36.61) is to generate a mean

electric field parallel to the mean magnetic field, E = −αt 〈B〉. This is remarkable,
since in ideal MHD the electric field E = −V × B is always perpendicular to the
magnetic field. Not surprisingly, this is called the α-effect. It is of central importance
in dynamo theory and will be discussed further in Lecture 38. The second term in
Eq. (36.61) produces a mean electric field parallel to the mean current; the coef-
ficient βM

t enters as an additional turbulent resistivity. This is called the β-effect.
The last term in Eq. (36.61) represents the effect of the fluctuating velocity field on
the 〈B〉.

The approach in this lecture has been theoretical. It only becomes physics when
it is compared with what occurs in nature. This can be determined from experiment,
as in the case of hydrodynamic flow in a pipe or wind tunnel, or from observations
of astrophysical plasmas, such as the interstellar medium or the solar wind. The
most striking thing about these data is that they display the general form of the
Kolmogorov spectrum, i.e., an input range, an inertial range, and a dissipation range,
as sketched in Fig. 36.7. An example of the spectrum fluctuations in an optical
signal induced by inhomogeneities in the atmospheric refractive index is shown
in Fig. 36.10. The presence of input, inertial, and dissipation ranges are apparent,
and the 5/3 power law in the inertial range is in agreement with the predictions of
Kolmorogov theory.
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Fig. 36.10 Measured
spectrum of turbulence in the
earth’s atmosphere due to
inhomogeneities in the index
of refraction induced by
fluctuations in the density and
temperature. The 5/3 power
law in the inertial range is in
agreement with Kolmogorov
theory. (See
etoile.berkeley.edu/∼jrg/
SEEING/node3.html.)

While the power law in the inertial range often appears to be close to the Kol-
mogorov value, closer examinations of data for both hydrodynamic and MHD
turbulence show that small deviations from the value 5/3 exist and are real. This
deviation is often attributed to the intermittency, or the lack of self-similarity at small
scales, that we have discussed previously. A clear example of this phenomenon in
MHD turbulence is shown in Fig. 36.11, which shows the spectrum of the fluctuating
magnetic energy in a region of the Earth’s magnetosphere as measured in situ by a
constellation of satellites. (The horizontal axis is the wave number normalized to
the ion Larmor radius. The separation between the satellites was about 100 km.)

Fig. 36.11 Spectrum of
fluctuations in the magnetic
energy in a region of the
earth’s magnetosphere as
measured by the CLUSTER
mission.10 (See
http://sci.esa.int/science-e/
www/object/index.cfm?
fobjectid=38841)

10 F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, M. André, S. Buchert, and H. Rème,
Phys. Rev. Letters 96, 075002 (2006).
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The exponent for the power law in the inertial range is approximately 8/3, much
steeper than the Kolmogorov value.

MHD turbulent spectra are not often measured in the laboratory. An example of
data from an RFP plasma is shown in Fig. 36.12. (We will discuss the RFP config-
uration in more detail in Lectures 37 and 38. The terms “Standard” and “PPCD”
refer to different modes of experimental operation. “Right” and “Left” propagation
can be thought of as referring to different “twists” in the background magnetic field.
These details are not important here.) The toroidal mode number n is a proxy for
the wave number k = n/R, where R is the major radius of the toroidal device.
In this example, the plasma is continually “stirred” by a handful of unstable, long
wavelength-resistive MHD modes (the modes with large amplitude near n = 0).
This is the energy input scale. Note, however, that not only is the spectrum not
Kolmogorov, but it does not have an inertial range. It appears that some sort of
dissipation occurs across the entire range of wave numbers, even though the colli-
sional dissipation is quite small. (There is also an anomalous heating of the ions in
this experiment, which may be related to non-MHD effects that are operating on all
scales.) This behavior is as yet unexplained.

Fig. 36.12 Experimentally
measured magnetic energy
spectrum for an RFP device.
There is no inertial range.
(Courtesy of P. W. Terry)

In this lecture we have implicitly maintained our fundamental assumption, intro-
duced in Lecture 1, that the material under consideration looks the same no matter
how finely it is subdivided. With regard to turbulence, this means that the material
looks the same at all scales: in the input range, the inertial range, and the dissipa-
tion range; at both low k and high k. For “normal” fluids, such as air and water in
the terrestrial environment, this is usually a good assumption. However, for MHD
the situation is not as clear. For example, in a hot magnetized plasma the ion Lar-
mor radius is only 10−2to 10−3 of the largest scale length. Clearly, even in cases
where the largest scales are well described by MHD, if the inertial range extends
for more than a few decades beyond the large energy-producing eddies, both the



www.manaraa.com

240 Lectures in Magnetohydrodynamics

high-k end of the inertial range and the dissipation range will be greatly influenced
by physics that is not incorporated in the MHD model. The validity of using MHD to
model turbulence in these circumstances must be questioned. This is especially clear
from the example of Fig. 36.12. Incorporating non-MHD effects into comprehensive
models of turbulence in magnetized plasmas is an area that needs further theoretical
development.
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Lecture 37
MHD Relaxation: Magnetic Self-Organization1

Relax! Don’t do it!
Frankie Goes to Hollywood

Magnetized fluids and plasmas are observed to exist naturally in states that are rel-
atively independent of their initial conditions or the way in which the system was
prepared. Their properties are completely determined by boundary conditions and a
few global parameters, such as magnetic flux, current, and applied voltage. Succes-
sive experiments carried out with the same global parameters yield the same mean
state, even though they were not initiated in exactly the same way (for example,
how the gas initially fills the vacuum chamber or the breakdown process). Further,
if the system is disturbed it tends to return to the same state. These preferred states
are called relaxed, or self-organized, states, and the dynamical process of achieving
these states is called plasma relaxation, or self-organization. Relaxed states can-
not result from force balance or stability considerations alone, because there may
be many different stable equilibria corresponding to a given set of parameters and
boundary conditions. Some other process must be at work.

The energy principle says that a system tries to achieve its state of minimum
potential energy

W =
∫

V0

(
B2

2μ0
+ p

Γ − 1

)
dV . (37.1)

Taken literally, minimization of W yields the state B = 0, p = 0, which is
physically irrelevant. Clearly, the minimization must be constrained in some way.
Minimization with the condition that the total magnetic flux Φ be fixed yields
B = constant, p = 0, which is better but still not physically realistic. Further
constraints are required.

1 The seminal references and summary are contained in J. B. Taylor, Rev. Mod. Phys. 58, 741
(1986). Much of the present discussion is a condensation of Sergio Ortolani and Dalton D. Schnack,
Magnetohydrodynamics of Plasma Relaxation, World Scientific, Singapore (1993).

Schnack, D.D.: MHD Relaxation: Magnetic Self-Organization. Lect. Notes Phys. 780,
241–259 (2009)
DOI 10.1007/978-3-642-00688-3 37 c© Springer-Verlag Berlin Heidelberg 2009
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Recall that, in ideal MHD, the integrals

Kl =
∫

Vl

A · BdV , l = 1, 2, . . . , (37.2)

are constant on each and every flux tube Vl in the system. These are the Wöltjer
invariants (see Lecture 12). There are an infinite number of these constraints. In an
earlier lecture we showed that the existence of the Wöltjer invariants is equivalent
to the assumption of ideal MHD, E = −V×B, and vice versa. We therefore seek to
minimize W subject to the constraint of ideal MHD. If we vary the magnetic field
and pressure independently, then

δW = 0 =
∫

V0

(
B · δB
2μ0

+ δp

Γ − 1

)
dV

= 1

μ0

∫

V0

B · ∇ × (ξ × B) dV + 1

Γ − 1

∫

V0

δpdV , (37.3)

where ξ is the displacement. Since δB and δp are independent, the last integral
is minimized by setting δp = 0. The first integrand is rewritten using the vector
identities

∇ · [B × (ξ × B)] = B · ∇ × (ξ × B) − (ξ × B) · ∇ × B (37.4)

and

B × (ξ × B) = ξB2 − Bξ · B, (37.5)

so that
∫

V0

(ξ × B) · ∇ × BdV +
∮

S

n̂ · [ξB2 − Bξ · B
]

d S = 0. (37.6)

The surface integral vanishes with the boundary conditions n̂ · ξ = n̂ · B = 0, and
the volume integral becomes

∫

V

ξ · [(∇ × B) × B] dV = 0. (37.7)

Since this must hold for arbitrary ξ, minimization of W requires

(∇ × B) × B = 0 (37.8)

or

∇ × B = λ (r) B, (37.9)
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where λ (r) = J · B/B2 is related to the parallel current density. It is a function of
space that satisfies the equation

B · ∇λ = 0. (37.10)

It is constant along field lines. The relaxed magnetic fields are force-free (see
Lecture 17).

We remark on the minimization with respect to the pressure. Instead of setting
δp = 0, we could have used the adiabatic (ideal MHD) energy equation

δp = −Γp0∇ · ξ − ξ · ∇ p0. (37.11)

Minimization then yields ∇ p = (∇ × B) × B, instead of Eq. (37.8). The pressure
will be constant along a flux tube, but can vary from flux tube to flux tube. In that
case, the pressure distribution would be determined by the details of the way the
system was prepared, and would be unrepeatable. This is not what is observed.
Instead, if there is a small amount of resistivity the flux tubes will break. The pres-
sure will mix and equilibrate, resulting in a state with ∇ p = 0. To quote Taylor2:
“Relaxation proceeds by reconnection of lines of force, and during this reconnection
plasma pressure can equalize itself so that the fully relaxed state is a state of uniform
pressure. Hence, the inclusion of plasma pressure does not does not change our con-
clusion about the relaxed state. Of course, one may argue that pressure relaxation
might be slower than field relaxation, so that the former was incomplete and some
residual pressure gradients would remain . . .. However, no convincing argument for
determining the residual pressure gradient has yet been given. We shall, therefore,
consider ∇ p to be negligible in relaxed states – which in any event is a good approx-
imation for low-β plasmas.”

Dependence on the initial conditions is also a problem for the force-free relaxed
states given by Eqs. (37.9) and (37.10). The function λ (r) is determined by the
way the system is prepared, which is uncontrollable. We conclude that ideal MHD
over-constrains the system.

Taylor recognized that in a slightly resistive plasma contained within a perfectly
conducting boundary, one flux tube will retain its integrity, and that is the flux tube
containing the entire plasma! Then only the single quantity

K0 =
∫

Vo

A · BdV (37.12)

will remain invariant. We recognize this as the total magnetic helicity. Note that this
is not a proof; rather it is a conjecture based upon physical insight. Taylor’s con-
jecture is then that MHD systems tend to minimize their magnetic energy subject to
the constraint that the total magnetic helicity remains constant. In order to carry out

2 J. B. Taylor, Rev. Mod. Phys. 58, 741(1986).
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this calculation, we need to know something about how constrained minimization is
expressed in the calculus of variations.

Constrained Variation and Lagrange Multipliers3

Problem I: Given a continuous function f (x, y, . . .) of N variables in a
close region G, find the point (x0, y0, . . .) where f has an extremum.

Solution I: Set

∂ f
∂x = 0,

∂ f
∂y = 0,

etc.

(37.13)

This yields N simultaneous equations in N unknowns whose solution is x =
x0, y = y0, etc.

Problem II: Now suppose that the variables (x, y, . . .) are no longer inde-
pendent, but are subject to the restrictions, or constraints,

g1 (x, y, . . .) = 0,

g2 (x, y, . . .) = 0,

·
·
·
gh(x, y, . . .) = 0,

(37.14)

where h < N . Find (x0, y0, . . .).
Solution IIA: Use Eq. (37.14) to algebraically eliminate h of the unknowns.

Then the procedure of solution I yields N −h simultaneous equations in N −h
unknowns, which can be solved for (x0, y0, . . .). This can be quite tedious.

Solution IIB: Introduce h + 1 new parameters λ0, λ1, . . ., λh , and construct
the function

F = λ0 f + λ1g1 + λ2g2 + . . . + λh gh. (37.15)

The unknowns are now (x, y, . . . , λ0, λ1, . . . , λh). There is one more
unknown than equations, so we can determine (x0, y0, . . .) and the ratios of
(λ0, λ1, . . .) from the unconstrained problem

∂ F
∂x = 0, ∂ F

∂y = 0, . . . ..

∂ F
∂λ1

= g1 = 0, ∂ F
∂λ2

= g2 = 0, . . . ..
(37.16)

3 This discussion follows R. Courant and D. Hilbert, Methods of Mathematic Physics, Vol. 1, Inter-
science, New York (1953).
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If λ0 �= 0, we can set λ0 = 1 since F is homogeneous in the λi . This procedure
avoids the algebra of eliminating the unknowns from the constraints. The λi

are called Lagrange multipliers, and the procedure is called the method of
Lagrange multipliers.

We now apply this method to the constrained variational problem.
Problem III: Find y(x) that makes

J {y} =
x1∫

x0

F
(
x, y, y′) dx (37.17)

stationary, has given boundary values y(x0) = y0, y(x1) = y1, and is subject
to the subsidiary condition (constraint)

K =
x1∫

x0

G
(
x, y, y′) dx = C. (37.18)

Solution III: Let y(x) be the desired extremal, and consider the neighboring
curve

y + δy = y(x) + ε1η(x) + ε2ζ (x), (37.19)

with η(x0) = η(x1) = ζ (x0) = ζ (x1) = 0. Then

Φ (ε1, ε2) =
x1∫

x0

F
(
x, y + ε1η + ε2ζ, y′ + ε1η

′ + ε2ζ
′) dx (37.20)

must be stationary at ε1 = ε2 = 0 with respect to all sufficiently small values
of ε1 and ε2 for which

Ψ (ε1, ε2) =
x1∫

x0

G
(
x, y + ε1η + ε2ζ, y′ + ε1η

′ + ε2ζ
′) dx = C. (37.21)

Let
χ = λ0Φ (ε1, ε2) + λΨ (ε1, ε2) , (37.22)

where λ0 and λ are Lagrange multipliers. Then for an extremum, we require

∂χ

∂ε1

∣∣∣∣ ε1=0
ε2=0

= ∂

∂ε1
[λ0Φ + λΨ]

∣∣∣∣ ε1=0
ε2=0

= 0 (37.23)
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and

∂χ

∂ε2

∣∣∣∣ ε1=0
ε2=0

= ∂

∂ε2
[λ0Φ + λΨ]

∣∣∣∣ ε1=0
ε2=0

= 0. (37.24)

Using the results from Lecture 25 on the calculus of variations, we have

∂Φ

∂ε1
=

x1∫

x0

η [F]y dx, (37.25)

∂Φ

∂ε2
=

x1∫

x0

ζ [F]y dx, (37.26)

∂Ψ

∂ε1
=

x1∫

x0

η [G]y dx, (37.27)

and

∂Ψ

∂ε2
=

x1∫

x0

ζ [G]y dx, (37.28)

where we have introduced the notation

[F]y ≡ ∂ F

∂y
− d

dx

(
∂ F

∂y′

)
. (37.29)

Equations (37.23) and (37.24) then become

x1∫

x0

{
λ0 [F]y + λ [G]y

}
ηdx = 0, (37.30)

and

x1∫

x0

{
λ0 [F]y + λ [G]y

}
ζdx = 0. (37.31)
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From Eq. (37.30), we find

λ0

λ
= −

∫ x1

x0
η [F]y dx∫ x1

x0
η [G]y dx

, (37.32)

so that the ratio λ0/λ is independent of ζ . Then since ζ is arbitrary, we con-
clude from Eq. (37.31) that

λ0 [F]y + λ [G]y = 0 (37.33)

or λ0/λ = − [G]y / [F]y . If λ0 �= 0 (i.e., [G]y �= 0), we can set λ0 = 1, and
the minimizing condition is

[F]y + λ [G]y = 0 (37.34)

or

d

dx

∂

∂y′ (F + λG) − ∂

∂y
(F + λG) = 0. (37.35)

So, minimizing
∫

Fdx subject to the constraint
∫

Gdx = C is equivalent
to minimizing

∫
(F + λG) dx without constraint.

Then, according to Taylor’s conjecture, we should minimize the functional
I = W − λ′K0 without constraint [where λ′ is a constant, and the minus sign is
conventional; eventually λ′ will be related to the variable λ used in Eqs. (37.9) and
(37.10)], i.e., the proper variational problem is δ I = δW − λ′δK0 = 0. (Do not
confuse δW and δK0 with their use in the energy principle.)

Proceeding, we have

δW = 1

μ0

∫

V0

δB · BdV = 1

μ0

∫

V0

(∇ × δA) · BdV

= 1

μ0

∫

V0

[δA · ∇ × B + ∇ · (δA × B)] dV

= 1

μ0

∫

V0

δA · ∇ × BdV + 1

μ0

∫

S0

(δA × B) · n̂d S , (37.36)

and

δK0 =
∫

V0

(δA · B + A · δB) dV
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=
∫

V0

[δA · B + ∇ · (A × δA) + δA · ∇ × A] dV

= 2
∫

V0

δA · BdV +
∫

S0

(A × δA) · n̂d S , (37.37)

so that

δ I =
∫

V0

δA ·
[

1

μ0
∇ × B − 2λ′B

]
dV +

∫

S0

(n̂ × δA) · (B + λ′A
)

d S. (37.38)

The surface S is a perfect conductor where we require n̂ × δE = −iωn̂ × δA = 0,
so that the surface term vanishes. Then setting δ I = 0,

∫

V0

δA ·
[

1

μ0
∇ × B − 2λ′B

]
dV = 0. (37.39)

Since this must hold for arbitrary δA, we obtain the minimizing condition as

∇ × B = λB, (37.40)

where λ ≡ 2μ0λ
′ is a constant. This means that the system has lost memory of

the details of how it was prepared. States that satisfy Eq. (37.40) are relaxed states.
They are independent of the initial conditions, in agreement with experiment.

We will see that Taylor’s conjecture leads to states that agree with experimental
results over a wide range of parameters. But why should it be true? Why should the
helicity be invariant while the energy is minimized? For example, consider K0. We
showed in Lecture 12 that

d K0

dt
= −2

∫
E · BdV . (37.41)

In ideal MHD, E = −V × B and d K0/dt = 0. However, in resistive MHD, E =
−V × B + ηJ and

d K0

dt
= −2η

∫
J · BdV ≈ O (η) �= 0, (37.42)

so that K0 is not constant. Further,

dW

dt
= −

∫
J · EdV = −η

∫
J 2dV ≈ O (η) �= 0, (37.43)

so that K0 and W formally decay at the same rate! So, in what sense does W decay
while K0 remains constant?
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What matters is the relative rate of decay of energy with respect to helicity. The
dynamical processes that are responsible for relaxation should dissipate W faster
than K0, even if they are at the same order in the resistivity. The ratio W/K0 should
be minimized.

Taylor envisioned relaxation to occur as a result of resistive MHD turbulence
acting at small scales. If we measure time in units of the Alfvén time τA, then
Eqs. (37.42) and (37.43) can be written non-dimensionally as

dW

dt
= − 2

S

∫
J 2dV (37.44)

and

d K0

dt
= − 2

S

∫
J · BdV , (37.45)

where S = τR/τA � 1 is the Lundquist number. We write the magnetic field as
B = ∑Bkeik·r → Bkeikx and the current as J = ∑ ik × Bkeik·r → k Bkeikx . Then
at large k,

dWk

dt
≈ − 2

S
k2 B2

k (37.46)

and

d K0k

dt
≈ − 2

S
k B2. (37.47)

Now dWk/dt ≈ O(1) when k2 B2/S ≈ 1 or kW ≈ BS1/2 ≈ O(S1/2). This is the
wave number at which W is dissipated. But at this wave number,

d K0

dt

∣∣∣∣
k=kW

≈ kW B2

S
= B3S−1/2 ≈ O(S−1/2) � 1. (37.48)

This suggests that small-scale turbulence may dissipate energy more efficiently than
helicity. This process is an example of selective decay of invariants.

It can also be argued that K0 is preserved by long wavelength motions. To do
this, we first need to define the helical flux. In cylindrical geometry, the condition
∇ · B = 0 is

1

r

∂

∂r
(r Br ) + 1

r

∂ Bθ

∂θ
+ ∂ Bz

∂z
= 0. (37.49)

We define a new independent variable φ = mθ + nz/R, where m and n are poloidal
and toroidal mode numbers. Then Eq. (37.49) becomes

1

r

∂

∂r
(r Br ) + 1

r

∂

∂φ

(
m Bθ + nr

R
Bz

)
= 0. (37.50)
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This condition will be satisfied identically if

r Br = −∂χm,n

∂φ
(37.51)

and

m Bθ + nr

R
Bz = ∂χm,n

∂r
, (37.52)

where χm,n is the helical flux function associated with mode numbers (m, n). Inte-
grating Eq. (37.52) from 0 to r , we find

χm,n = m

r∫

0

Bθ dr ′ + n

R

r∫

0

Bzr
′dr ′

= mψ + n

R
Φ, (37.53)

where ψ is the poloidal flux and Φ is the toroidal flux.
Now consider the integral

K̂ =
∫

F (r, t) A · BdV . (37.54)

If F = 1, then K̂ = K0. The rate of change of K̂ is

d K̂

dt
=
∫

V0

[
∂ F

∂t
A · B + F

∂A
∂t

· B + FA · ∂B
∂t

]
dV (37.55)

=
∫

V0

[
∂ F

∂t
A · B − 2FE · B + F∇ · (A × E)

]
dV . (37.56)

The second term in the integrand vanishes in ideal MHD. The remainder can be
written as

d K̂

dt
=
∫

V0

[
∂ F

∂t
A · B − (A × E) · ∇F + ∇ · (FA × E)

]
dV

=
∫

V0

[
∂ F

∂t
A · B − (A × E) · ∇F

]
dV +

∫

S0

F (n̂ × E) · Ad S. (37.57)

The surface term vanishes because n̂ × E = 0 on S0, and in ideal MHD, A × E =
B (A · V) − V (A · B), so that, finally,
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d K̂

dt
=
∫

V0

[(
∂ F

∂t
+ V · ∇F

)
A · B − (B · ∇F) A · V

]
dV . (37.58)

Then, in ideal MHD, d K̂/dt = 0 if (a) d F/dt ≡ ∂ F/∂t + V · ∇F = 0, so that F
is co-moving with the fluid, and (b) B · ∇F = 0, so that F is constant along field
lines.

Both ψ , the poloidal flux, and Φ, the toroidal flux, satisfy these conditions, as
does any function F (ψ,Φ). In particular, any function of the helical flux χm,n ,
defined in Eq. (37.53), satisfies these conditions. Therefore, a mode with mode
numbers (m, n) preserves the invariants

K̂α (m, n) =
∫

V0

χα
m,mA · BdV , α = 0, 1, 2, . . . ... (37.59)

However, in the realistic case where all modes are present, the only invariant pre-
served by all the modes is K̂0 = K0, the global helicity invariant.

The above is a heuristic argument, as it relies on ideal MHD, and we know that
resistivity is present. However, it gives more credence to the conjecture that min-
imizing I = W − λK0 is a plausible approach. It also suggests how relaxation
may occur as a result of long wavelength motions, with low (m, n), rather than by
small-scale turbulence. In any case, the real test is to compare the predictions of the
theory with the results of experiment.

For the most part, we will restrict ourselves to doubly periodic cylindrical geom-
etry. The curl of Eq. (37.40) is

∇2B + λ2B = 0, (37.60)

and the z-component is

∇2 Bz + λ2 Bz = 0. (37.61)

In cylindrical geometry, this becomes Bessel’s equation, with solutions of the form

Bz =
∑
m,k

am,k Jm(αr )ei(mθ+kz), (37.62)

with

α2 = λ2 − k2. (37.63)

Equations for the other components are similarly found. It can be shown (but not
here!) that only two of these solutions can have minimum energy: azimuthally sym-
metric solutions with m = 0,

Bz

B0
= J0 (λr ) , (37.64)
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Bθ

B0
= J1 (λr ) , (37.65)

and

Br

B0
= 0; (37.66)

and helical solutions with m = 0 and m = 1 components,

Bz

B0
= J0 (λr ) + a1,k J1 (αr ) cos (θ + kz) , (37.67)

Bθ

B0
= J1 (λr ) + a1,k

α

[
λJ ′

1 (αr ) + k

αr
J1 (αr )

]
cos (θ + kz) , (37.68)

and

Br

B0
= −a1,k

α

[
k J ′

1 (αr ) + λ

αr
J1 (αr )

]
sin (θ + kz) . (37.69)

In all cases,

B0 = λa

2J1 (λa)

Φ

2π
, (37.70)

where

Φ = 2π

a∫

0

Bzrdr (37.71)

is the total axial (or toroidal) flux. The helical distortions make no contribution to
the toroidal flux, which is all carried by the azimuthally symmetric solution.

The azimuthally symmetric states, Eqs. (37.64, 37.65, 37.66), are called the
Bessel function model (BFM). They are shown in the Fig. 37.1.

For these states, the total helicity and the toroidal flux are related to λa through

K0

Φ2
= L

2πa

{
λa
[
J 2

0 (λa) + J 2
1 (λa)

]− 2J0 (λa) J1 (λa)

J 2
1 (λa)

}
. (37.72)

The details of the relaxed state are therefore completely determined by the two
invariants K0 and Φ: K0/Φ

2 determines λa, and hence the field profiles, through
Eq. (37.72); then Φ and λa determine the field amplitude through Eq. (37.70). The
quantity K0/Φ is related to the total volt-seconds available to sustain the discharge.

We now define two useful parameters:

F ≡ Bz (a)

〈Bz〉 = πa2 Bz (a)

Φ
(37.73)
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Fig. 37.1 Magnetic field profiles for the BFM. Some experimental measurements are also shown

where 〈. . .〉 denotes the volume average, which is called the field reversal parame-
ter; and

Θ ≡ Bθ (a)

〈Bz〉 = πa

μ0

I

Φ
, (37.74)

which is called the pinch parameter. The latter is related to the ratio of the total
toroidal current to the total toroidal flux. For the BFM, it is easy to show that

F = λa J0 (λa)

2J1 (λa)
(37.75)

and

Θ = λa

2
, (37.76)

so that F and Θ are related by

F = ΘJ0 (2Θ)

J1 (2Θ)
. (37.77)

A plot of F versus Θ for the azimuthally symmetric states is shown as the solid line
in Fig. 37.2. This is an example of an F–Θ diagram.

The theory predicts that the toroidal field at the wall will reverse sign with respect
to its value on axis when λa > 2.4 or Θ > 1.2.

Thus, setting Θ by adjusting the current and flux predetermines the shape of
the magnetic field profiles and the value of the toroidal field at the outer boundary.
The F–Θ diagram defines a continuum of relaxed states, which could be “dialed
in” by the operator of an experiment. Two regimes are of particular interest. The
first corresponds to Θ � 1. It is called the tokamak regime. In this case the fields
are given by the small argument limits of the Bessel functions J0 and J1, so that
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Fig. 37.2 An F–Θ diagram. The solid curve is the prediction of Taylor’s theory. The points indi-
cate experimental measurements

Bz ≈ B0, Bθ ≈ (B0Θ/2) (r/a), and Bz/Bθ ≈ 1/Θ � 1. These fields are sketched
in the Fig. 37.3.

Fig. 37.3 Magnetic field profiles for the relaxed state when Θ � 1. This is called a tokamak

The second regime corresponds to Θ > 1.2 and is called the RFP regime. The fields
are as sketched as the solid lines in Fig. 37.1.

For the helical states given by Eqs. (37.67, 37.68, 37.69), λa is now determined
by the boundary condition Br (a) = 0, i.e.,

k J ′
1(αa) + λ

αa
J1(αa) = 0, (37.78)
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where α = √
λ2 − k2 [see Eq. (37.69)], and solutions exist only for discrete values

of λa. There are no solutions when λa < 3.11 or Θ < 1.56. Only the azimuthally
symmetric states exist for lower Θ. However, when Θ > 1.56, the helical state has
the lowest energy. The minimum energy corresponds to ka ≈ 1.25 > 0. The ampli-
tude of the helical distortion, a1,k , is then determined by K0/Φ

2 [see Eq. (37.72)]
with λa = 3.11.

The predictions of the theory can be summarized as follows:

1. As the volt-seconds (expressed as K0/Φ
2) increase, Θ will increase.

2. As Θ increases, Bz(a) will decrease.
3. For Θ > 1.2, Bz(a)/Bz(0) < 0.
4. At Θ = 1.56 there will be the onset of a helical distortion.
5. As K0/Φ

2 is further increased, the amplitude of the helical distortion will
increase, but Θ will remain fixed at 1.56. The increase in volt-seconds does not
drive more current; it is absorbed by the increased inductance due to the helical
distortion of the plasma.

So, how does the relaxation theory compare with experiment? Very well in one
case, pretty well in others, and not well in another.
Multi-Pinch

The multi-pinch is an axisymmetric toroidal plasma with a non-circular cross-
section; the poloidal cross-section of the plasma exhibits equatorial, or up–down,
symmetry, as shown in Fig. 37.4.

Fig. 37.4 Flux surfaces for the dipole state of the multi-pinch experiment

For such systems the periodic cylindrical approximation used in our previous dis-
cussions of this lecture does not apply, and toroidal effects must be included.

The calculation of the relaxed states goes through in much the same way as give
previously, except that Eq. (37.60) is now expressed as a partial differential equation
in the poloidal plane; the details will not be given here (see Taylor). It turns out that
physically interesting axisymmetric (n = 0) solutions can be found. The lowest
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energy state possesses up–down symmetry; in analogy with our previous discus-
sion, this is the only solution for low values of K0/Φ

2. The field profiles are again
parameterized by λa; K0/Φ

2 determines λa, and then either K0 or Φ determines
the amplitude. There are also solutions that are not up–down symmetric (but still
axisymmetric). These are analogous to the helically distorted states in the cylinder.
These solutions do not exist for λa < 2.21; when λa = 2.21 these states have the
lowest energy. As the volt-seconds are increased from a low value, λa increases until
λa = 2.21. As more volt-seconds are applied, λa (and hence the current) remains
fixed while the amplitude of the up–down asymmetry increases.

These predictions are borne out well by experiment. The current saturation at
λa = 2.21 and the increase in up–down asymmetry are all observed. Details such
as the dependence of the saturation level on toroidal flux are also predicted by the
theory with quantitative accuracy (again, see Taylor).
Reversed-field Pinch

For the case of the RFP there is qualitative agreement between theory and exper-
iment. Toroidal field reversal is observed, but it occurs at a larger value of Θ than
predicted. [See the data points in the figure following Eq. (37.77)]. The pressure is
not zero, and the parallel current (i.e., λa) is not constant throughout the plasma.
However, most of the discrepancy occurs in the outer regions of the cylinder. These
are sketched in Fig. 37.5.

Fig. 37.5 Pressure (left) and normalized parallel current (right) for a partially relaxed RFP

Both profiles are nearly constant over the inner part of the discharge. The pres-
sure corresponds to β ∼ 0.1. The value of λ in the core of the plasma is in good
agreement with the value for the BFM [see Eq. (37.76)]. Experimentally determined
magnetic field profiles are shown as the points in Fig. 37.1. Again, deviation from
the predictions of the theory occurs primarily near the outer boundary.

In the RFP, relaxation seems to be inhibited near the wall. This is because the
fully relaxed condition λ = constantis inconsistent with the boundary conditions
for a resistive plasma at a perfectly conducting boundary. For a resistive plasma, the
tangential electric field at the wall is

n̂ × E = (n̂ · B) V − (n̂ · V) B + ηn̂ × J. (37.79)
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Since n̂ × E = n̂ · B = n̂ · V = 0 at a perfectly conducting boundary, we must also
require n̂ × J = 0, i.e., the tangential component of the current density must vanish
(see, for example, the example of Hartmann flow in Lecture 10). This is inconsistent
with non-vanishing λ; λ must decrease to zero at the wall. The RFP is said to exhibit
incomplete relaxation. And, if the magnetic relaxation is necessarily incomplete, so
is the pressure relaxation.

Further, the current saturation predicted to occur at Θ = 1.56 is not observed.
Recall that Taylor’s helical state has ka = 1.25. However, in a cylinder of finite
period length (as would result from straightening a torus), the wave number k is
quantized as k = n/R (with R the major radius). The predicted helical states thus
require na/R = 1.25 or an aspect ratio R/a = n/1.25, where n is an integer.
If the experiment is not so constructed, the helical states are impossible. (Helical
fluctuations with m = 1 are observed in RFP experiments, but they have ka < 0 so
they are not related to the helical relaxed state. They do, however, play an important
role in the dynamics or relaxation.) In contrast, in the multi-pinch the distinction
is between states of different up–down, rather than toroidal (or axial), symmetry.
Quantization is not required, and there is good agreement with experiment.
Tokamak

For the tokamak, relaxation theory predicts p = constant, Bz = constant, and
Bθ = constant × r (i.e., Jz = constant). This is clearly not what is observed in
experiments – except possibly after a “major disruption,” a sudden event in which
confinement is lost and the current is quenched. That state is consistent with the
predictions of Taylor’s theory (p = J = 0, Bz = constant). Perhaps the major
disruption is the manifestation of a “relaxation event” in the tokamak. But if so,
why occur all the time? Why are tokamaks the leading candidate for a controlled
fusion reactor?

This last discussion leads us to enquire into the dynamics responsible for relax-
ation. As mentioned, Taylor envisioned relaxation to result from small-scale turbu-
lence in a resistive plasma. If this were true, then it should not know about the global
geometry in which it is acting; it should not care if it is in a tokamak, an RFP, or
a multi-pinch. It should apply equally well to all systems describable by resistive
MHD.

However, we have seen that this is not what is found in experiments. There are
large differences between relaxation (or lack thereof) in the multi-pinch, the RFP
(and spheromak), and the tokamak. Perhaps the fundamental relaxation dynamics
operates differently in each of these devices. Perhaps it knows about the geometry
and the overall magnetic configuration. Recall that long wavelength motions can
preferentially preserve the global helicity K0 [see Eq. (37.59) and the preceding
discussion]. These modes occur differently in the tokamak and the RFP. This can be
seen in their q (safety factor) profiles, as sketched in Fig. 37.6.

The RFP has a decreasing q-profile. There are many long wavelength [low (m,n)]
singular surfaces, and they become closely spaced near the location of the field
reversal (the reversal surface). It is easy for them to interact nonlinearly, and provide
quasi-continuous relaxation. Large, quasi-periodic oscillations are common in RFP
plasmas, as shown in Fig. 37.7.
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Fig. 37.6 Safety factor profiles for the tokamak (top) and RFP (bottom) configurations

Fig. 37.7 Experimental data from an RFP showing quasi-periodic “sawteeth,” which are inter-
preted as relaxation events4

They are called sawtooth oscillations (for historical reasons). They are character-
ized by (among other things) large increases in the amplitude of low (m,n) magnetic
fluctuations with helical pitch corresponding to resonant perturbations. It is well
established both experimentally and theoretically as a result of numerical simulation
that MHD relaxation is associated with these events.

4 S. C. Prager, et al., Nuclear Fusion 45, S276 (2005).
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The cyclic relaxation process that occurs in an RFP is indicated schematically in
Fig. 37.8.

Fig. 37.8 Schematic diagram of the cyclic process associated with MHD relaxation

In contrast, the tokamak has an increasing q-profile and only a handful of low
(m,n) rational surfaces. These are widely separated so it is difficult for them to inter-
act with each other. The magnetic configuration prevents relaxation from occurring,
even though low-level turbulence is always present. On the isolated occasion when
these modes can seriously interact nonlinearly, disruptive-like events are predicted.
Perhaps this disruptive behavior is just the tokamak seeking its preferred state.
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Lecture 38
Dynamos: Magnetic Field Generation
and Maintenance1

I saw the best minds of my generation destroyed by madness,
. . . angelheaded hipsters burning for the ancient heavenly
connection to the starry dynamo in the machinery of the night.

Allen Ginsburg, Howl

The study of dynamos is motivated by one of the most fundamental problems of
physics: How to explain the structure, dynamics, and maintenance of magnetic fields
in the universe. “Dynamo action” will be defined precisely later in this lecture. For
now, we say that a dynamo is a process that can generate and amplify magnetic
fields.

Although it is generally accepted that magnetic fields were not produced during
the Big Bang, magnetic fields on the order of 10−24 T were likely created during
the very early stages of the universe, before the onset of galaxy formation. The best
current estimate of the magnetic field strength in existing galaxies is 10−10 T; how
did the primordial field get amplified by 14 orders of magnitude? Further, galactic
magnetic fields exhibit coherent structure on length scales that are much larger than
the observed dynamical fluctuations. If the field is tied to the plasma, it should be
tangled on relatively short length scales. How did this large-scale structure come
about, and how is it maintained?

The resistive diffusion time (based on Coulomb collisions) for galaxies is esti-
mated to be longer than the age of the universe, so there is no need to explain the
lifetime of galactic fields. However, this is not the case for smaller astronomical
bodies, such as the earth. The age of the earth is estimated to be about 4.5×109 years
(the age of the solar system), but the resistive diffusion time is only 1.5 × 104 years,
a difference of over 5 orders of magnitude. Any primordial field trapped during the
earth’s formation would have decayed by now, and yet the earth clearly remains
magnetized. The terrestrial magnetic field is also dynamical; the geological record
indicates that the polarity of the dipole field has reversed many times over the past

1 Much of this lecture follows H. K. Moffatt, Magnetic Field Generation in Electrically Con-
ducting Fluids, Cambridge University Press, Cambridge, UK (1978). We also acknowledge Ellen
Zweibel and Fausto Cattaneo for many constructive suggestions concerning the content and
presentation.

Schnack, D.D.: Dynamos: Magnetic Field Generation and Maintenance. Lect. Notes Phys. 780,
261–281 (2009)
DOI 10.1007/978-3-642-00688-3 38 c© Springer-Verlag Berlin Heidelberg 2009
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several million years, with a mean period of about 4 × 105 years. This record is
indicated in the Fig. 38.1.

Fig. 38.1 Geological record of reversals of the earth’s magnetic field

The age of the sun is also about 4.5×109 years, and the resistive diffusion time is
on the order of 109 years, so, again, there is no clear need to explain the lifetime of
the solar magnetic field. However, the solar field is incredibly dynamic and regular.
Observations of the number of sunspots versus time show an almost regular period
of 11 years, as shown in Fig. 38.2.

Fig. 38.2 The cyclic behavior of the number of sunspots (the “sunspot cycle”) for a period of
almost 250 years

The peaks of the curve are called “solar maxima,” and the valleys are called “solar
minima.” Solar maxima are associated with dynamical activity such as solar flares
and coronal mass ejections that can cause disruptions to terrestrial communications
and damage satellites. The oscillations in the sunspot number are strongly correlated
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with reversals of the dipole field with a 22-year period. Further, during the beginning
of a solar cycle (the end of solar minimum), the sunspots first appear at high latitudes
(near the poles of the sun) and then migrate toward the equator as solar maximum is
approached. During the next cycle the polarity of the spots is reversed, correlating
with the reversal of the large-scale dipole field. This behavior is captured in the
“butterfly diagram,” which indicates the observed latitude of sunspots as a function
of time. This is shown over several solar cycles in Fig. 38.3.

Fig. 38.3 Latitude of the appearance of new sunspots over several sunspot cycles. The plus (+)
and minus (−) signs indicate the polarity of the sunspots. This is called the “butterfly diagram”

What is the origin of this dynamical behavior?
The solar magnetic field also exhibits structure on scale lengths much longer than

the observed velocity fluctuations. Figure 38.4 (left) shows what is called the “gran-
ulation” of the photosphere or visible surface of the sun. These structures are thought
to be the tops of thermal plumes generated by convection below the photosphere.
Their characteristic size is about 106 m. Presumably this is the scale on which the
coronal magnetic field is driven. Figure 38.4 (right) shows bright loops that are
the characteristic structures in the solar corona. They are believed to highlight the

Fig. 38.4 Left: Granulation of the solar “surface,” or photosphere. The cells are thought to be the
tops of plumes of rising gas. Right: Bright loops in the solar corona. They are believed to outline
the magnetic field structure
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structure of the magnetic field. Their characteristic scale is around 107 − 108 m. As
is the case in galaxies, how can the short-wavelength driving mechanism result in
long-wavelength coherent magnetic field structure?2

A mechanism for field generation and maintenance is also needed to explain
the behavior of laboratory plasmas, in particular the RFP. In Fig. 38.5 we sketch
the toroidal flux as a function of time for an RFP discharge. The solid line rep-
resents experimental results. The dashed line indicates the results of a transport
simulation using the experimental parameters. This calculation indicates that flux
should rapidly decay as a result of resistive diffusion.3 In the experiment the flux is
maintained for a much longer time.

Fig. 38.5 A sketch of the toroidal flux in an RFP plasma as a function of time. The dashed line
indicates the best results of “transport theory” that does not include a dynamo mechanism

After toroidal field reversal is achieved in the RFP, only negative toroidal flux can
be supplied by the external circuit. Without some field generation mechanism, the
lifetime of the positive toroidal flux (due to the toroidal field between the reversal
surface and the axis) is limited by the resistive decay of the toroidal field. This is
especially apparent in the case where the toroidal field is held fixed (and negative) at
the outer boundary. The toroidal flux will become negative on the resistive diffusion
time, as indicated in Fig. 38.6.

Instead, we have seen in Lecture 37 that toroidal flux is generated during
quasi-periodic bursts of activity, called sawteeth. The relevant figure is repeated as
Fig. 38.7.

What is the relationship, if any, between “relaxation” and “dynamo”? What is the
relationship between the behavior of the RFP plasma and astrophysical plasmas?

For all the cases discussed above, the magnetic Prandtl number is very small, so
that resistivity is the dominant dissipation mechanism. It is usual to ignore viscosity
in the theory.

Consider a fluid that occupies a volume V with surface S. It is characterized by a
resistive diffusivity λ = η/μ0. It is surrounded by a vacuum of volume V̂ ; we take

2 For more details about the sun and the solar corona, see Eric R. Priest, Solar Magnetohydrody-
namics, D. Reidel, Dortrecht (1982).
3 E. J. Caramana and D. A. Baker, Nuclear Fusion 24, 423 (1984).
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Fig. 38.6 Initial (left) and final (right) axial magnetic field profiles of an RFP when the magnetic
field is fixed at the outer boundary

Fig. 38.7 Experimental data from an RFP showing quasi-periodic “sawteeth,” which are inter-
preted as relaxation events 4

the volume V∞ = V + V̂ to comprise the entire universe! All flows V and currents J
flow within V . The flow satisfies ∇ · V = 0 within V , and V · n̂ = 0 on S. The fluid
has a characteristic length scale L ∼ V 1/3. The magnetic field B, which occupies
V∞, is produced entirely by J. Then at large distance from the fluid B must be a
dipole field, so B ∼ 1/r 3 as |r | → ∞. The field B evolves according to

∂B
∂t

= ∇ × (V × B) + λ∇2B in V, (38.1)

4 S. C. Prager, et al., Nuclear Fusion 45, S276 (2005).
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∇ × B = 0 in V̂ , (38.2)

and

[[B]] = 0 on S, (38.3)

where [[. . .]] indicates the jump across S; Eq. (38.3) says that there are no surface
currents on S. Equations (38.1, 38.2, 38.3) are to be solved subject to an initial
condition B(r, 0) = B0(r). The magnetic energy is

M (t) = 1

2μ0

∫

V∞

B2dV . (38.4)

It is finite since B2dV ∼ 1/r3 is bounded at infinity. We assume that initially
M(0) = M0 > 0. Clearly, if V = 0 then M(t) → 0 as t → ∞. Some non-zero
velocity field is necessary to counteract the effects of resistive diffusion.

We can now define dynamo action: For a given V and λ, we say that V acts as a
dynamo if M(t) �= 0 as t → ∞. This includes cases where M(t) tends to a constant,
where it fluctuates, and where it goes to infinity.

What about the flow V(r, t)? Where did it come from? In “classical” dynamo
theory, which we will review here, V is taken to be any kinematically possible flow
field. What does this mean? The density and velocity must satisfy the continuity
equation

∂ρ

∂t
+ ∇ · ρV = 0, (38.5)

with

V · n̂ = 0 (38.6)

on S. The joint field [V(r, t), ρ(r, t)] is said to be kinematically possible if Eqs. (38.5)
and (38.6) are satisfied. We remark that only a small subset of these fields are also
dynamically possible, i.e., satisfy the equation of motion; the allowable flows in
classical dynamo theory are not so constrained. For this reason, classical dynamo
theory is also called kinematic dynamo theory; the back reaction of the magnetic
field on the flow, through the J × B force, is not considered. This may be valid
if the kinetic energy is much greater than the magnetic energy. We also note that
Eq. (38.5) can be re-written as

dρ

dt
= −ρ∇ · V, (38.7)
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where dρ/dt = ∂ρ/∂t + V · ∇ρ is the Lagrangian derivative. If the fluid is incom-
pressible, so that dρ/dt = 0, then kinematically possible flows are defined by the
conditions ∇ · V = 0 and V · n̂ = 0 on S. This will be the case in what follows.

Why treat the velocity field this way? There are two reasons. First, the kinetic
energy is much larger than the magnetic energy in many astrophysical settings, so
it may be a good physical approximation. Second, and perhaps more important, the
resulting theory is linear, and therefore amenable to analytic treatment; if V(r, t) is
a given function, then Eq. (38.1) is linear in B. Formally, this treatment is justified
if the initial (t = 0) magnetic energy is much smaller than the kinetic energy. If suc-
cessful, the theory will then describe the initial stage of dynamo action, preceding
from a state of weak magnetization. The questions classical dynamo theory asks are
as follows: (a) what kind of flows V(r, t) (if any) can produce a dynamo? and (b)
how can we test whether a given V(r, t) produces a dynamo?

One constraint on the parameters of the problem can be obtained by considering
the time evolution of the magnetic energy, given by Eq. (38.4). The magnetic energy
changes according to

d M

dt
=
∫

V

V · J × BdV − η

∫

V

J 2dV , (38.8)

where the integrals are taken over V because both the velocity and the current den-
sity vanish in V̂ . The first term is the rate of production of magnetic energy, and
the second term is the rate of Ohmic dissipation. If the flow is laminar (i.e., not
dominated by small-scale turbulence), their magnitudes can be estimated as

∫

V

V · J × BdV ∼ (V J B) L3 ∼ V

(
B

μ0L

)
BL3 = V

L

(
B2L3

μ0

)
≈ V

L
M (38.9)

and

η

∫

V

J 2dV ∼ ηJ 2L3 ∼
(

η

μ0

)(
B2 L3

μ0

)
1

L2
≈ λ

L2
M. (38.10)

For dynamo action we require dM/dt > 0, which yields V L/λ ≡ Rm > 1,
where Rm is the global magnetic Reynolds’ number. A more rigorous estimate is
Rm > π2 ∼ 10. This result is not very insightful, but true nonetheless; we could
have anticipated that the dynamics should dominate dissipation for magnetic field
generation to occur. In practice, we expect that Rm >> 1 will be required.

Now consider the important case where the system has some preferred axis, O–A,
say, as in Fig. 38.8.

This may be because the system is rotating, as is the case for planets, stars, and
galaxies, or because of inherent geometry, as in a magnetic fusion device. Such a
configuration has two types of magnetic fields: a poloidal field, BP, which lies in
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Fig. 38.8 Toroidal and poloidal magnetic fields in a system with a preferred axis

the (R,Z) plane everywhere parallel to the axis O–A; and, a toroidal field BT in
the êφ direction, which encircles the axis O–A. How could a dynamo work in this
situation? In order to sustain both fields, we need to devise a steady loop, denoted as
BP � BT, in which poloidal field is converted into toroidal field, and toroidal field
is in turn converted into poloidal field; they sustain each other. The first part of the
loop, BP → BT, can be easily accomplished with differential rotation about the axis
O–A, as shown in Fig. 38.9.

Fig. 38.9 Generation of toroidal field from poloidal field by differential rotation

If the velocity VT (r) = Vφ êφ does not correspond to rigid body rotation, then
some of the poloidal field that was originally parallel to the axis will be “bent” into
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the toroidal direction, thus producing toroidal field. Now we just need to get BP

from BT. It turns out that this is not simple.
Now let the system have axial symmetry, so that everything is independent of the

toroidal angle φ. With B = ∇ × A, the induction equation is

∂A
∂t

= −E = V × B − ηJ. (38.11)

We know from our previous studies of toroidal equilibria that in an axisymmetric
system we can write ψ = R Aφ , so that

RBR = −∂ψ

∂z
, (38.12)

RBz = ∂ψ

∂ R
, (38.13)

and

μ0 Jφ = −Δ∗ψ ≡ −∇ ·
(

1

R
∇ψ

)
. (38.14)

If we also decompose the velocity as V = VP + VT , then V × B = −VP · ∇ψ , and
Eq. (38.11) becomes

∂ψ

∂t
= −VP · ∇ψ + λΔ∗ψ. (38.15)

We now assume that

∇ · V = ∇ · VP = 0, (38.16)

(so that V is kinematically possible) and

VP · ∇λ = 0, (38.17)

(so that λ is advected with the fluid). We multiply Eq. (38.15) by ψ/λ and integrate
over all space to obtain

d

dt

∫

V∞

1

2λ
ψ2dV = −

∫

V∞

1

λ
ψVP · ∇ψdV +

∫

V∞

ψΔ∗ψdV . (38.18)

Using Eqs. (38.16) and (38.17), the integrand in the first term on the right-hand side
can be written as (ψ/λ) VP ·∇ψ = ∇·(VPψ2/2λ

)
. Then, integrating the divergence,
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d

dt

∫

V∞

1

2λ
ψ2dV = −

∫

S∞

1

2λ
ψ2VP · n̂d S +

∫

V∞

ψΔ∗ψdV . (38.19)

As r → ∞, ψ ∼ 1/r , so the surface integral scales like VP · n̂/λ, so the surface
integral vanishes if VP · n̂/λ → 0 as r → ∞. This is trivially satisfied if VP · n̂ = 0
on S∞, or VP = 0 in V̂ . Thus

d

dt

∫

V∞

1

2λ
ψ2dV =

∫

V∞

ψΔ∗ψdV . (38.20)

From Eq. (38.14), we can write Δ∗ψ = ∇ · f, where f = ∇ψ/R. Then using the
identity ψ∇ · f = ∇ · (ψf) − f · ∇ψ and integrating the divergence, we find

d

dt

∫

V∞

1

2λ
ψ2dV =

∫

S∞

1

R
ψ n̂ · ∇ψd S −

∫

V∞

1

R
|∇ψ |2 dV . (38.21)

The surface integral scales as 1/r2 as r → ∞, so, finally,

d

dt

∫

V∞

1

2λ
ψ2dV = −

∫

V∞

1

R
|∇ψ |2 dV . (38.22)

The integral on the right-hand side is positive definite, so that the left-hand side
must continually decrease with time. Therefore ψ2 (and hence BP and M(t)) must
vanish as t → ∞. Thus, dynamo action is impossible in axisymmetric systems. This
famous result is known as Cowling’s Theorem.

Cowling’s Theorem is one of many antidynamo theorems. Others state that BT

cannot be maintained in axisymmetry, that dynamo action is impossible from purely
toroidal flows, and that dynamo action is impossible from plane two-dimensional
motions. Together, they imply that dynamos require some ingredient that is symme-
try breaking, like three-dimensionality. The step BT → BP must come from complex
motions. So, dynamos may be possible, but they cannot be simple!

A relatively simple three-dimensional flow that can amplify magnetic field is
called the “stretch, twist, fold” flow.5 It is illustrated in Fig. 38.10.

The initial condition consists of a circular flux tube. It is then stretched to larger
diameter. Since both the volume of, and the flux in, the tube must be conserved (the
flow is incompressible), the stretching increases the magnitude of the magnetic field
in the tube. The twist and fold stages return the tube to its original diameter, but with

5 The “stretch-fold-twist” mechanism was first introduced by S. I. Vainshtain and Ya. B. Zeldovich,
Sov. Phys. Usp. 15, 159 (1972); it is discussed in detail by H. K. Moffatt and M. R. E. Proctor, J.
Fluid. Mech. 154, 493 (1985); who give a specific velocity field that will accomplish the desired
deformation.
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Fig. 38.10 “Stretch, twist, fold” flow leading to amplification of the magnetic field

a larger magnetic field. The field will increase each time the process is repeated. This
leads to field amplification, albeit on a small length scale. We remark that this flow
is quite contrived and unlikely to occur in nature exactly as diagrammed above. But
it is kinematically possible, and that is all that matters in classical dynamo theory.
One could conceive of flows like this occurring irregularly as a result of turbulence.
Then, on the average, field amplification might occur.

The example of stretch, twist, fold flow implies that the axisymmetry required by
Cowling’s Theorem might be broken at short length scales if there is a small random
(and therefore non-axisymmetric) component of the velocity field. As we did with
turbulence (Lecture 36), we write the flow and magnetic field as

V(r, t) = V0(r, t) + Ṽ(r, t) (38.23)

and

B(r, t) = B0(r, t) + B̃(r, t), (38.24a)

where f0 = 〈 f 〉 is an axisymmetric mean component and f̃ is a small, three-
dimensional random component (i.e.,

∣∣ f̃
∣∣ << | f0|). Of course,

〈
f̃
〉 = 0. The

random component may arise from either turbulence or a superposition of waves.
For example, in the case of a thermally stratified fluid in the presence of gravity, if
g · ∇T > 0 (strongly heated from below) the fluid is unstable (because of thermal
expansion and buoyancy), and the random component will be turbulent; if g·∇T > 0
(so that the hot fluid is above the cold fluid), the configuration is stable and the
random component will be the result of waves. If L is the scale of spatial variation
for the mean quantities and l0 is the scale of variation for the random component,
then, for the case of turbulence, l0 is the size of the energy containing eddies, and
for the case of waves, l0 is the wavelength.

The ansatz represented by Eqs. (38.23) and (38.24) implies a separation of scales
in both space and time; that is, lo << L and l0/Ṽ << L/V0. The resulting theory
is called mean-field dynamo theory.

From our turbulence lectures (Lecture 36), we know that the mean and random
components of the magnetic field evolve according to



www.manaraa.com

272 Lectures in Magnetohydrodynamics

∂B0

∂t
= ∇ × (V0 × B0) + ∇ × E + λ∇2B0 (38.24b)

and

∂B̃
∂t

= ∇ × (V0 × B̃
)+ ∇ × (Ṽ × B0

)+ ∇ × G + λ∇2B̃, (38.25)

where

E = 〈Ṽ × B̃
〉

(38.26)

and

G = Ṽ × B̃ − 〈Ṽ × B̃
〉
. (38.27)

The goal of the theory will be to express E in terms of V0 and B0, i.e., we will look
for a closure relation.

Suppose that B̃ = 0 at t = 0. Then, at t = 0,

∂B̃
∂t

= ∇ × (Ṽ × B0
)
, (38.28)

so that B̃ is linear in B0. It follows that E = 〈Ṽ × B̃
〉

is also linear in B0 (since B̃ is
linear in B0. We therefore anticipate a closure expression of the form

Ei = αi j B0 j + βi jk
∂ B0 j

∂xk
+ γi jkl

∂2 B0 j

∂xk∂xl
+ · · · . (38.29)

It will be important to note that αi j , βi jk , γi jkl , etc., are pseudo-tensors, since E is a
vector and B0 is a pseudo-vector. Since B̃ depends on Ṽ, V0, and λ (in addition to the
linear dependence on B0), we expect that the αi j , βi jk , γi jkl , etc., will be completely
determined by V0, λ, and the statistical properties of Ṽ.

Now consider the case V0 = constant. If we transform to a frame of reference
moving with V0, then V0 × B0 → 0, and B0 evolves according to

∂ B0i

∂t
= εi jk

∂

∂x j

(
αkl B0l + β jlm

∂ B0l

∂xm
+ . . .

)
+ λ∇2 B0i . (38.30)

If B0 is weakly non-uniform, then ∂ B0l/∂x j >> ∂2 B0l/∂x j∂xm and the first term
dominates. (However, β jlm will still contribute to an “eddy resistivity” that will
enhance λ, i.e., λe = λ+β. We will ignore this effect from now on, and concentrate
on the effect of α.) The we can write

Ei = αi j B0 j . (38.31)
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We can decompose αi j into symmetric and antisymmetric parts as

α
(s)
i j = 1

2

(
αi j + α j i

)
(38.32)

and

α
(A)
i j = 1

2

(
αi j − α j i

)
. (38.33)

The antisymmetric part, Eq. (38.33), can be written as

α
(A)
i j = −εi jkak, (38.34)

where

ak = −1

2
εlmkαlm, (38.35)

(you can work it out!) so that αi j = α
(s)
i j − εi jkak . Then Eq. (38.31) becomes

Ei =
(
α

(s)
i j − εi jkak

)
B0 j

= α
(s)
i j B0 j − εi jk B0 j ak

= α
(s)
i j B0 j + (a × B0)i , (38.36)

so that the antisymmetric part of αi j merely contributes an addition to the mean
velocity, i.e., V0 → V0 +a. Only the symmetric part contributes to the dynamo. We
will therefore concentrate on the symmetric part of αi j ; from now on the notation
αi j will refer to its symmetric part.

When Ṽ is statistically isotropic and homogeneous, the statistical properties of Ṽ
are invariant under rotation. In this case αi j must also be isotropic, so that

αi j = αδi j (38.37)

and a = 0. Now, α must be a pseudo-scalar. That means that it must change sign
under coordinate inversion r′ = −r. Since α depends on the statistical properties of
Ṽ, this implies that Ṽ cannot be statistically invariant under inversions, i.e., α can
be non-zero only if Ṽ lacks reflectional symmetry. This imposes another constraint
on flows that can produce dynamo action.

If α �= 0, then E = αB0 and

J = σE = σαB0, (38.38a)

where σ = 1/η is the electrical conductivity. The field E = 〈
Ṽ × B̃

〉
therefore

produces a mean current that is parallel to B0. Without fluctuations J = σV0 × B0,
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which is perpendicular to B0. The appearance of this parallel mean current is called
the α-effect. Since mean toroidal current due to the fluctuations is JT = σαBT, and
since ∇ × BP = μ0JT = μ0σαBT, the mean toroidal field acts as a source for the
poloidal field, and we have a way of closing the loop BP � BT and producing a
dynamo. Now, all we need to do is to calculate α!

We have seen that Ṽ must lack reflectional symmetry in order to produce dynamo
action. It turns out that this means that

〈
Ṽ · ω̃

〉 = 0, where ω̃ = ∇ × Ṽ is the random
vorticity. The quantity V ·ω is called the kinetic helicity (as opposed to the magnetic
helicity). The physical picture is illustrated in Fig. 38.11.

Fig. 38.11 Left: Rotating flow with no kinetic helicity. Right: Rotating flow with positive kinetic
helicity

The flow on the left has vorticity but no kinetic helicity. The flow on the right
has finite kinetic helicity. Therefore, the random flow field must have some twist, or
handedness, in order to produce dynamo action.

We now proceed to calculate α. In order to compute E = 〈
Ṽ × B̃

〉
, we must

express B̃ in terms of B0, λ, and the properties of Ṽ. The fluctuating field satisfied
Eq. (38.25). For the case V0 = 0, which is all we will consider here, this is

∂B̃
∂t

= ∇ × (Ṽ × B0
)+ ∇ × G + λ∇2B̃. (38.38b)

The term containing G = Ṽ×B̃− 〈Ṽ × B̃
〉
will cause difficulty in solving this equa-

tion, and we look for circumstances under which it can be ignored. The magnitudes
of the terms in this equation are, approximately,

∂B̃
∂t︸︷︷︸

B̃/t0

= ∇ × (Ṽ × B0
)

︸ ︷︷ ︸
B0 Ṽ / l0

+∇ × G︸ ︷︷ ︸
Ṽ B̃/ l0

+ λ∇2B̃︸ ︷︷ ︸
λB̃/ l2

0

, (38.39)

where B̃ = 〈B̃2
〉1/2

, Ṽ = 〈Ṽ2
〉1/2

, and l0 and t0 are, respectively, the length and time
scales associated with the fluctuations. There are two cases of interest: (1) random
waves, for which Ṽ t0/ l0 ≈ Ṽ k0/ω0 << 1 (or Ṽ << ω0/k0, the phase velocity of
the waves); and, (2) turbulence, for which Ṽ t0/ l0 ≈ 1.

For the case of random waves, we have



www.manaraa.com

38 Dynamos: Magnetic Field Generation and Maintenance 275

|∇ × G|∣∣∂B̃/∂t
∣∣ ≈ ṼB̃

l0

t0
B̃

= Ṽ t0
l0

<< 1, (38.40)

and the term ∇ × G can be ignored, so that

∂B̃
∂t

= ∇ × (Ṽ × B0
)+ λ∇2B̃. (38.41)

For the case of turbulence, Ṽ t0/ l0 ≈ 1 so that formally the term ∇ × G must be
retained. However, both ∇ × G and ∂B̃/∂t can be neglected in comparison with
λ∇2B̃ if

∣∣∂B̃/∂t
∣∣

∣∣λ∇2B̃
∣∣ ≈ B̃

t0

l2
0

λB̃
= Ṽ l0

λ
<< 1, (38.42)

where Ṽ = l0/t0. This is equivalent to Rm0 << 1, where Rm0 is the magnetic
Reynolds’ number at the l0 length scale. In this case,

0 = ∇ × (Ṽ × B0
)+ λ∇2B̃. (38.43)

In both cases, B̃ is generated from Ṽ. For the case of turbulence (38.43), the process
is instantaneous because of the dominance of diffusion. However, the solutions of
Eq. (38.41) for random waves should approach the solutions of Eq. (38.43) in the
limit Rm0 << 1. Therefore, we can study the case of random waves and obtain the
turbulent results in the limit λ → ∞. These approximations are collectively called
first-order smoothing.

An Aside on Some Statistical Definitions for Random Fields
The purpose here is to introduce the kinetic helicity spectrum, Eq. (38.53),
which will appear in what follows. The details can be skipped without loss
of continuity in the presentation, but are included here for completeness. For
many more details, see G. K. Batchelor, Theory of Homogeneous Turbulence,
Cambridge, 1953.
The Fourier transform pair for the velocity Ṽ is

Ṽ(k, ω) = 1

(2π )4

∫∫
Ṽ(r, t)e−i(k·r−ωt)drdt (38.44)

and

Ṽ (r, t) =
∫∫

Ṽ (k, ω) ei(k·r−ωt)dkdω. (38.45)
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Since Ṽ (r, t) is real, Ṽ (−k,−ω) = Ṽ∗ (k, ω), and since ∇ · Ṽ (r, t) = 0,
k · Ṽ (k, ω) = 0. The correlation tensor is defined as

Ri j (ξ, τ ) = 〈Vi (r, t) Vj (r + ξ, t + τ )
〉
, (38.46)

where 〈F〉 = ∫
F P(u1, u2, . . .)du1du2 . . . is the probability average of F ,

and P is the joint probability distribution function (i.e., it is the probability of
finding the variable u1 between u1 and u1 + du1, and u2 between u2 + du2,
etc.).
Now consider the mean quantity

〈
Ṽi (k, ω)i Ṽ ∗

j (k, ω)
〉 =

1

(2π )8

∫∫ ∫∫ 〈
Ṽi (r, t)i Ṽ

∗
j (r, t)

〉
e−i(k·r−k′ ·r′−ωt−ω′t ′)drdr′dtdt ′.

(38.47)

Since
∫∫

ei(k−k′)·xei(ω−ω′)t dxdt = (2π )4δ
(
k − k′) δ (ω − ω′) , (38.48)

we can write Eq. (38.47) as

〈
Ṽi (k, ω)i Ṽ ∗

j (k, ω)
〉 = Φi j (k, ω) δ

(
k − k′) δ (ω − ω′) , (38.49)

where Φi j (k, ω), which is called the spectrum tensor of Ṽ (r, t), is the Fourier
transform of the correlation tensor, Eq. (38.46). The spectrum tensor has the
Hermitian property Φi j (k, ω) = Φi j (−k,−ω) = Φ∗

j i (k, ω), and since ∇ ·
Ṽ (r, t) = 0, kiΦi j (k, ω) = k jΦi j (k, ω) = 0.
The energy spectrum is defined as

E (k, ω) = 1

2

∫

Sk

Φi i (k, ω) d S, (38.50)

where Sk is a sphere of radius k in k-space. Also,

1

2

〈
Ṽ 2
〉 = 1

2
Rii (0, 0)

= 1

2

∫∫
Φi i (k, ω)dkdω

=
∫∫

E(k, ω)dkdω. (38.51)
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Therefore, ρE (k, ω) dkdω is to be interpreted as the kinetic energy in the
range between k and k + dk, and ω and ω + dω; E (k, ω) > 0 for all k and ω.

The vorticity is defined as ω̃ = ∇ × Ṽ, its transform is ω̃ (k, ω) =
ik×Ṽ (k, ω), and its spectrum tensor is Ωi j (k, ω) = εimnε j pq kmk pΦnq (k, ω).
Using the properties of Φi j , one finds Ωi i (k, ω) = k2Φi i (k, ω), so that

1

2

〈
ω̃2
〉 =
∫∫

k2 E(k, ω)dkdω. (38.52)

The kinetic helicity spectrum is defined as

F (k, ω) = i
∫

Sk

εiklkkΦil (k, ω) d S. (38.53)

Then

〈
Ṽ · ω̃

〉 = iεikl

∫∫
kkΦil (k, ω) dkdω (38.54)

=
∫∫

F (k, ω) dkdω. (38.55)

From the above, it can be shown that
〈
Ṽ · ω̃

〉 = 0 if Ṽ is reflectionally sym-
metric. We have seen that lack of reflectional symmetry is required for the
α-effect, so F (k, ω) �= 0 is an important property of flow fields that can
produce dynamo action.

Now let B0 be uniform and steady, and ∇ · Ṽ = 0. Then, with first-order smooth-
ing, the induction equation is

∂B̃
∂t

− λ∇2B̃ = (B0 · ∇) Ṽ, (38.56)

which is an inhomogeneous equation for B̃. Consider the case of a single wave

Ṽ (r, t) = Ṽ0
[
sin (kz − ωt) êx + cos (kz − ωt) êy

]
, (38.57)

with k = kêz and k > 0, ω > 0, and assume a solution of the form B̃ (r, t) =
ReB̃0 exp [i (k · r − ωt)]. Substituting into Eq. (38.56), we find

B̃0 = ik · B0

−iω + λk2
Ṽ0, (38.58)
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so that

B̃ (r, t) = Re
ik · B0

−iω + λk2
Ṽ (r, t) (38.59)

or

B̃ (r, t) = k · B0

ω2 + λ2k4

(−ωṼ + λkũ
)
, (38.60)

where

ũ (r, t) = Ṽ0
[
cos (kz − ωt) êx − sin (kz − ωt) êy

]
. (38.61)

Notice that, in Eq. (38.60), the diffusivity λ introduces a phase shift between B̃
and Ṽ.

The computation of E = 〈
Ṽ × B̃

〉
is now straightforward. The result for αi j is

αi j = α(3)δi3δ j3, where

α(3) = − λṼ 2
0 k3

ω2 + λ2k4
. (38.62)

Notice the following: (1) The tensor αi j is anisotropic, i.e., the only non-zero com-
ponent is α33; it knows about the direction of the wave. (2) αi j → 0 as λ → 0,
so that some diffusion is necessary for the α-effect. This is related to the phase
shift noted above. Without this phase shift, we would have Ṽ × B̃ = 0, and no
possibility of a dynamo. (3) E = 〈Ṽ × B̃

〉
is uniform in space, so that G = Ṽ × B̃ −〈

Ṽ × B̃
〉 = 0, i.e., first-order smoothing is exact in this case. This will not be true

in general.
The case of a superposition of random wave is similar, but requires more cal-

culation. One must now take the Fourier transform of Eq. (38.56), solve, and then
invert the transform and compute E = 〈Ṽ × B̃

〉
. The result, after a long calculation,

is Ei = αB0i with

α = −1

3
λ

∫∫
k2 F (k, ω)

ω2 + λ2k4
dkdω, (38.63)

where F (k, ω) is the kinetic helicity spectrum defined in Eq. (38.55). As anticipated,
the α-effect requires a flow field with

〈
Ṽ · ω̃

〉 �= 0.
We remark on the role played by dissipation (i.e., λ) in dynamo action. It seems

intuitive that too much dissipation will simply make everything diffuse away, so
that the dynamo will cease to operate. On the other hand, we have just seen [see
Eqs. (38.62, 38.63)] that some diffusion is necessary for the α-effect; without it,
dynamo action is impossible. Of further interest is the rate γ at which the magnetic
field is generated by the dynamo. Heuristically, we expect γ ∼ λs , where 0 ≤ s ≤ 1.
Dynamos for which 0 < s ≤ 1 are called slow dynamos, since their rate depends
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on the small dissipation λ. An example is the α-effect. Most of the known dynamo
mechanisms are of this type. A dynamo for which γ is independent of λ (i.e., s = 0)
is called a fast dynamo. These dynamos are of special interest because they may be
required to account for magnetic field generation in astrophysical settings where λ is
extremely small. For example, the 22-year reversal cycle of the solar magnetic field
occurs much faster that resistive diffusion. Unfortunately, except for some contrived
examples, not many fast dynamos have been found theoretically. An example is
the “stretch, twist, fold” flow shown in Fig. 38.10. However, continuation of the
process for a large number of steps will lead to magnetic field structure on a very fine
spatial scale. If the system possesses any dissipation at all (as all real systems do),
its presence will eventually be felt and may affect the final rate of field generation.6

The quantitative role of diffusion in allowing or inhibiting dynamos remains an
unresolved issue.

We now consider the evolution of the axisymmetric mean fields in cylindri-
cal coordinates. We write V = Rω(R, z)êφ + VP and B = B(R, z)êφ + BP,
where BP = ∇ × [A (R, z) êφ

]
. With E = αB, Eq. (38.24) becomes the pair of

equations

∂ B

∂t
+ RVP · ∇

(
B

R

)
= R (BP · ∇ω) + êφ · ∇ × (αBP)

+ λ

(
∇2 − 1

R2

)
B (38.64)

and

∂ A

∂t
+ 1

R
VP · ∇ (R A) = αB + λ

(
∇2 − 1

R2

)
A. (38.65)

The toroidal field B has two sources, given by the first two terms on the right-hand
side of Eq. (38.64). The first term, R (BP · ∇ω), is due to differential rotation in the
mean flow. The second term, êφ · ∇ × (αBP), represents the generation of toroidal
field directly from the poloidal field as a result of the α-effect. The poloidal field,
Eq. (38.65), has a single source term, αB, which comes directly from the toroidal
field and the α-effect. This reconfirms Cowling’s theorem that, without the sym-
metry breaking due to three-dimensional motions (as encapsulated in α), dynamo
action is impossible.

6 The magnetic helicity K = ∫
A · BdV is conserved in ideal MHD. This implies that the mag-

netic field cannot be amplified in a fluid that has net magnetic helicity, i.e., K �= 0. Breaking
the constraint of helicity conservation requires dissipation. It can be shown that this is true even
if K = 0. Therefore, even fast dynamos must be dependent on dissipation, even if the overall
rate of magnetic energy production is independent of it. These are called diffusive fast dynamos.
An example is the stretch–fold–twist flow. For more discussion, see H. K. Moffatt and M. R. E.
Proctor, J. Fluid. Mech. 154, 493 (1985).
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The ratio of the two sources of the toroidal field is

|R (BP · ∇ω)|∣∣êφ · ∇ × (αBP)
∣∣ ≈ L BP |∇ω|

|α0| BP/L
= L2 |∇ω|

|α0| , (38.66)

where α0 is some characteristic value of α. If |α0| >> L2 |∇ω|, then the effect of
differential rotation is negligible and the only source of toroidal field is α. Since α is
also the source of poloidal field, these dynamos are called α2-dynamos. Conversely,
if |α0| << L2 |∇ω|, then differential rotation acts as a source of the toroidal field,
and the poloidal field is generated by α. These dynamos are called α − ω dynamos.
They may be important in astrophysical systems that are dominated by rotation.

Now, almost all of the preceding theory has depended on the assumption of
scale separation, as embodied in Eqs. (38.23) and (38.24). Similar assumptions
were required to make progress in theories of turbulence; see Lecture 36. How-
ever, in that lecture we saw that MHD turbulence may not be self-similar, with the
implication that the system may evolve toward an ensemble of small-scale, spiky,
patchy structures. In essence, the characteristic scale length of the system, L , tends
to become smaller and smaller as the turbulence develops. This throws into doubt
the assumption of separation of scales required to make theoretical progress in the
first place. This remains an unresolved issue. The development of classical dynamo
theory should be viewed with this situation in mind.

So, what really happens at small scales? Can small-scale turbulence really gen-
erate and sustain large-scale fields? In recent years computers have become just
barely powerful enough to begin to answer this question through direct numerical
simulation (DNS) of the MHD equations. One starts with a small, random Ṽ and B̃
fields with

〈
Ṽ · ω̃

〉 �= 0, integrates the resistive MHD equations forward in time with
Rm >> 1 (∼ 103), including the back-reaction, and looks for field amplification.
The result is that there is a dynamo due to the α-effect, i.e., the initial magnetic
energy is amplified. However, this energy is found to inevitably saturate, or stop
growing, at a low amplitude. Further, it seems that the process generates more

〈
B2
〉

than it does 〈B〉2, i.e., it can generate energy but not mean flux.7 It appears that
the way to generate and sustain mean flux is to have some around in the initial
state, which begs the question of how it got there in the first place. At the present
time it does not appear that small-scale turbulence alone is sufficient to explain the
sustainment and dynamics of solar and other magnetic fields.

Nonetheless, DNS does seem to do a pretty good job of reproducing the global
properties of the geo-dynamo.8 The large-scale field is sustained against resistive
diffusion and demonstrates reversals of polarity. People have also applied DNS to
the global sun (as opposed to a small slice of it). They get a dynamical field, but

7 S. I. Vainshtein and F. Cattaneo, Ap. J. 393, 165 (1992); F. Cattaneo and D. W. Hughes, Phys.
Rev. E 54, 4232 (1996); S. Boldyrev, F. Cattaneo, and R. Rosner, Phys. Rev. Lett. 95, 255001
(2005); F. Cattaneo and D. F. Hughes, Fluid Mech. 553, 401 (2006).
8 G. A. Glatzmaier and P. H. Roberts, Nature 377, 203 (1995).
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not detailed agreement with observations.9 For example, they cannot reproduce the
butterfly diagram.

What about laboratory plasmas? Historically, some sort of dynamo mechanism
has been invoked to explain the generation and sustainment of the toroidal flux in
the RFP. But what really happens? The RFP is a driven system. There is an applied
toroidal voltage that drives the current. This voltage (or toroidal electric field) con-
stantly supplies poloidal flux to the system (i.e., it drives current). As we saw in
Lecture 37, this tends to drive the system away from its preferred, relaxed condition,
resulting in the destabilization of long-wavelength, low-frequency (i.e., m = 1)
MHD modes. The nonlinear interaction of these modes produces a mean parallel
electric field E = 〈

Ṽ × B̃
〉

that tends to suppress parallel current in the core and
drive parallel current in the edge. This is precisely what is needed to produce toroidal
flux. This is an α-effect that accounts the first part of the dynamo loop, BP → BT.
Results from numerical simulation of this process are shown in Fig. 38.12. (E f is
the electric field due to the α-effect).

Fig. 38.12 Parallel components of the total, Ohmic, and fluctuating electric fields in an RFP 10

But, as far as I know, there is no evidence of the second half of the loop, BT →
BP. Instead, BT is simply dissipated resistively.

Magnetic energy comes from the external circuitry into the discharge as poloidal
flux. It is converted into toroidal flux by the α-effect produced by the nonlinear
interaction of long-wavelength MHD instabilities. Small-scale turbulence seems to
play little or no role in this process. The toroidal flux is then dissipated by resistivity.
If one turns off the driving force (the toroidal voltage), the discharge terminates
immediately. In the end, the RFP seems to exhibit flux transport and conversion as
an aspect of the relaxation process, but it does not appear to fit the definition of a
classical dynamo.

Of course, both the geo-dynamo and the solar dynamo also occur in driven sys-
tems; in both cases the drive is due to thermal convection as a result of strong heat-
ing from below. Perhaps similar processes as are observed in the RFP also occur
throughout the universe.

9 See, for example, M. S. Miesch, Journal of Physics: Conf. Series 118, 012031 (2008), and refer-
ences therein.
10 Y. L. Ho, S. C. Prager, and D. D. Schnack, Phys. Rev. Lett. 62, 1504 (1989).



www.manaraa.com



www.manaraa.com

Appendix

In April 2006, I gave three lectures at UW Madison on extended Magnetohydrody-
namics (MHD). These were the last three lectures of the semester for the course in
MHD. In doing so, I prepared a set of notes for the students, which are reproduced
here as an Appendix. The goal was to show where MHD comes from (what came
before) and how to extend the MHD model to incorporate additional physical effects
(what comes after), hence extended MHD. They are meant to be self-contained and
do not refer directly to any of the lectures in the body of this volume. I hope you
find them interesting and not too confusing.

Schnack, D.D.: Appendix. Lect. Notes Phys. 780, 283–317 (2009)
DOI 10.1007/978-3-642-00688-3 BM2 c© Springer-Verlag Berlin Heidelberg 2009
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Fluid Models of Magnetized Plasmas

1 Introduction

You are now all experts in MHD. As you know, ideal MHD describes the dynamics
of a perfectly conducting fluid in the presence of electric and magnetic fields. The
fluid obeys the usual laws of hydrodynamics, with the addition of the Lorentz body
force. The electromagnetic fields obey the “pre-Maxwell” equations (i.e., the laws
of electrodynamics as they were known before the work of James Clerk Maxwell).
These two systems are coupled by “Ohm’s law,” which states that the electric field
vanishes in a frame of reference moving with the fluid. The electromagnetic fields
affect the motion of the fluid, and the fluid in turn modifies the electromagnetic
fields. The ideal MHD equations are summarized in Table 1.

Table 1 Ideal MHD Equations

Fluid Ohm Field
∂n/∂t = −∇ · (nV) E = −V × B ∂B/∂t = −∇ × E

MndV/dt = −∇ P + J × B μ0J = ∇ × B

d P/dt = −γ P∇ · V

The fluid equations deal with the macroscopic properties of the fluid. That is, all
physical quantities are “averaged over elements of volume which are ‘physically
infinitesimal’, ignoring the microscopic variations of the quantities which result
from the molecular structure of matter.” This is generally a good approximation
for fluids such as water or gasses such as air. Interparticle collisions, which in these
cases occur on length scales (the “mean-free path”) that are much smaller than any
“physically infinitesimal” volume element, tend to “average out” the effects of indi-
vidual particle motion. However, in low-density, strongly magnetized plasmas, the
mean-free path between particle collisions can be comparable to the macroscopic
length scales, and we all know that these plasmas often exhibit macroscopic proper-
ties that reflect the fact that the medium is made up of individual charged particles

285
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(ions and electrons). Examples are the cyclotron gyration of charged particles in a
magnetic field and the average drift of these particle orbits relative to the field.

These issues raise the following questions:

1. In what sense can a low-density magnetized plasma be modeled as a fluid?
2. Are there other fluid descriptions besides ideal MHD?
3. What happened to the electric charge density?
4. What happened to the displacement current?
5. What is“Ohm’s law,” and where does it come from?
6. Where does MHD fit into this picture?

In what follows I will attempt to address these issues.

2 Models with Reduced Degrees of Freedom

A plasma consists of N individual particles. Each particle has a position and a
velocity, and each obeys the laws of Hamiltonian mechanics, i.e.,

q̇k = ∂ H

∂pk
, (1)

ṗk = − ∂ H

∂qk
, (2)

Ėk = ∂ H

∂t
, (3)

for k =1, 2, . . . ., N , where qk are the generalized coordinates of the particles, pk are
the conjugate momenta, Ek is the energy, and H (q1, q2, . . . , qN , p1, p2, . . . , pN ,t)
is the Hamiltonian for the system. If the Hamiltonian is independent of time, then the
energy is constant. For point particles, there are 6N degrees of freedom (dependent
variables).

The system, as defined by a point in the 6N -dimensional phase space (qk ,pk),
evolves in time along a precise trajectory according to Eqs. (1), (2), and (3). In
principle, once the Hamiltonian is known, the state of the system at any time t can
be determined by integrating Eqs. (1), (2), and (3) forward in time from its state
at t = 0. The problem with this approach is twofold. First, there is a tremendous
amount of information required to describe the system. Second, in any practical
sense, it is not possible to know the initial conditions with sufficient accuracy to
make this a useful procedure. It has proven useful to seek a statistical approach.

Instead of describing the system by its precise coordinates in the 6N -dimensional
phase space defined by the variables (qk ,pk), we consider an ensemble of all possible
realizations of the system in phase space (corresponding to all possible initial condi-
tions of the system), and we make the a priori assumption that, in its motion through
phase space in time, an individual system will pass arbitrarily close to all points in
phase space consistent with any constraints on the system (such as constant energy,
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for example). Then we might expect that the average properties of a realization of
a single system over time will be equivalent to the average of an ensemble of such
systems over phase space. This is called the ergodic hypothesis and is the basis for
statistical mechanics. (Another related hypothesis is sometimes called equal a proiri
probability for different regions in phase space; the system is just as likely to be
found at one point as another.) We can then define the function

FN (q1, q2, . . . , qN , p1, p2, . . . , pN , t)dq1dq2 . . . dqN dp1dp2 . . . dpN dt (4)

as the probability of finding particle 1 with position between q1 and q1 + dq1 and
momentum between p1 and p1 + dp1, particle 2 with position between q2 and q2 +
dq1 and momentum between p2 and p2 + dp2, and . . . particle N with position
between qN and qN + dqN and momentum between pN and pN + dpN , at a time
between t and t + dt . Clearly,

∫
FN (q, p)d N qd N p = 1. This description does not

reduce the number of degrees of freedom, but it does eliminate the need for precise
knowledge of the initial conditions. The time evolution of FN is given by Liouville’s
theorem,

d FN

dt
= ∂ FN

∂t
+

N∑
k=1

[
q̇k · ∂ FN

∂qk
+ ṗk · ∂ FN

∂pk

]
= 0, (5)

so that FN remains constant as a volume element moves about in phase space. The
validity of Liouville’s theorem only depends on the following:

1. The ergodic hypothesis is true.
2. The number of systems N remains constant.
3. The system obeys the laws of Hamiltonian dynamics (Eqs. 1, 2, 3).

While the phase space of Liouville’s theorem still has 6N degrees of freedom,
the fact that it encapsulates the dynamics of a volume element of phase space opens
the door to formulations that greatly reduce the amount of information required to
describe the system. For example, it is possible to define a single-particle distribu-
tion function by integrating FN over the positions and coordinates of all the other
particles:

F1(q1, p1, t)dq1dp1dt =
∫ ∫

· · ·
∫

FN (q1, q2, · · · , qN , p1, p2, . . . , pN , t)

×dq2 . . . dqN dp2 . . . dpN dt. (6)

This is the probability of finding particle 1 between q1 and q1+dq1 with momentum
between p1 and p1 + dp1, at a time between t and t + dt , for all possible configura-
tions of the remaining particles. (There is an implicit assumption that the particles
are identical, so that, in place of “particle,” we can say “a single particle.”)

It is now convenient, and consistent with convention, to define the one-particle
distribution function for a species of type α (=e, i, for ions and electron), f (1)

α , as

nα f (1)
α (q1, p1, t) = Nα F1(q1, p1, t), (7)
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where nα = Nα/V , Nα is the number of particles of species α, and V = ∫
d N q

is the system volume. In what follows, we also make the association q → x, and
p → Mv, so that q̇ → v and ṗ → F, where F = Ma is the force (due to both
external application and interparticle interactions), and a is the acceleration. Then a
dynamical equation for f (1)

α is found by applying the averaging procedure defined
in Eq. (6) directly to Liouville’s theorem, Eq. (5). After some algebra, the result is

d f (1)
α

dt
= ∂ f (1)

α

∂t
+ v1 · ∂ f (1)

α

∂x1
+ a1 · ∂ f (1)

α

∂v1
=
(

∂ f (1)
α

∂t

)

c

, (8)

where
(

∂ f (1)
α

∂t

)

c

= −
∑

β

∫ (
a1β − 〈aint

1β

〉) · ∂ f (2)
αβ

∂t
dxαdxβ . (9)

Here, a1 is the total acceleration felt by particle 1 due to all forces (both external
and internal), a1β is the total acceleration felt by particle 1 due to all other particles

of species β, and
〈
aint

1β

〉
is the average acceleration felt by particle 1 due to all other

particles of species β. The difference between the last two quantities is therefore
the acceleration due to nearest neighbor interactions (“collisions”), and Eq. (9) is a
measure of the binary collision rate. Equation (8) is called the kinetic equation.

Note that Eq. (9) depends on f (2)
αβ (x1, xβ, v1, vβ, t), the two-body distribution

function, defined in a manner analogous to Eq. (6). This is unknown. An equation
for it can be found by integrating Liouville’s theorem this time over the coordi-
nates and momenta of particles 3 through N . The result is an equation analogous to
Eq. (8), but with the right-hand side depending on f (3), the three-body distribution
function. In this way, one can generate a sequence of n equations for the first n
distribution functions that will ultimately depend on the (n + 1)-body distribution
function. There is always one more unknown than equations; the system is never
closed. Obtaining a solvable system of equations requires obtaining a relationship
that expresses the (n + 1)-body distribution function in terms of the previous n-
body (or lower) distribution functions. Such an expression is called a closure rela-
tion. Finding suitable closures is one of the primary tasks of theoretical plasma
physics.

For example, one approximation is to write the two-body distribution function
as the product of one-body distribution functions, i.e., fαβ = fα fβ . This ignores
two-body correlations. Since the plasma state is dominated by long range forces,
in many cases this is an excellent approximation. The collision operator is then
defined as (

∂ f (1)
α

∂t

)

c

≡
∑

β

Cαβ ( fα, fβ ). (10)

Specific expressions for Cαβ are derived by kinetic theory. These often appear as
differential operators, and specific expressions are not of interest here. However, we
note that, for a plasma in local thermodynamic equilibrium, the distribution function
is Maxwellian and d fM/dt = 0, so that we require that C( fM) = 0.
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For a system of charged particles, such as plasma, the total force is just the sum
of the electric and magnetic forces. The plasma kinetic equation (PKE) is therefore
written as

∂ fα
∂t

+ v · ∂ fα
∂x

+
(

qα

Mα

)
〈E + v × B〉 · ∂ fα

∂v
=
∑

β

Cαβ( fα, fβ), (11)

where 〈E〉 and 〈B〉 are the sum of the external and average internal fields. They
satisfy Maxwell’s equations

∇ · 〈E〉 = 〈ρq
〉
/ε0, (12)

∂ 〈B〉
∂t

= −∇ × 〈E〉 , (13)

and
∇ × 〈B〉 = μ0 〈J〉 + 1

c2

∂ 〈E〉
∂t

, (14)

where
〈
ρq
〉

and 〈J〉 are the average charge and current densities. These equations
must be solved simultaneously with Eq. (11).

Going from the dynamic description of individual, interacting particles (1, 2, 3)
to the statistical description (11) represents a tremendous reduction (6N → 6) in
the number of degrees of freedom needed to describe the evolution of the system.
[In doing so we have also lost a tremendous amount of information about the system
(∼ 6(N − 1)). In particular, we have lost all information resulting from direct two-
body (and higher) interactions. Even though the PKE is a very good approximation,
it is still just an approximation.] Unfortunately, the coupled system consisting of
Eqs. (11, 12, 13, 14) can still only be solved in the simplest circumstances, and
the validity of these solutions is often restricted to very short times and quite small
distances. To make progress, we require an even further reduction of the theoretical
model.

3 Moment (Transport) Equations

The plasma kinetic equation provides a statistical description of plasma dynamics
in phase space. Recall that, corresponding to any probability distribution fα(x, v, t),
the expectation value, or average, of any function of the velocity is 〈g(x, t)〉 =∫

g(x, v, t) fα(x, v, t)d3v. It is therefore convenient to introduce the concept of
velocity moments of the distribution function, which provide the local (in space)
average value of familiar (or theoretically useful) physical quantities. In particular,
we define the following:
The density:

nα(x, t) ≡
∫

fα(x, v, t)d3v. (15)
The velocity:

nαVα(x, t) ≡
∫

v fα(x, v, t)d3v. (16)
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The temperature and pressure:

nαT = Pα ≡
∫

1

2
Mαv′2 fα(x, v, t)d3v′, (17)

where v′ = v − Vα is the “random” component of the velocity.
The heat flux:

qα ≡
∫

1

2
Mαv′2v′ fα(x, v, t)d3v′. (18)

The stress tensor:

Πα ≡
∫

Mα

[
v′v′ − 1

3
v′2I
]

fα(x, v, t)d3v′. (19)

The total pressure tensor:

Pα ≡
∫

Mαv′v′ fα(x, v, t)d3v′ = PαI + Πα. (20)

The total stress tensor:

Pα ≡
∫

Mαv′v′ fα(x, v, t)d3v′ = MαnαVαVα + Pα. (21)

The total energy flux:

Qα ≡
∫

1

2
Mαv2v fα(x, v, t)d3v = qα +

(
5

2
Pα + 1

2
MαnαV 2

α

)
Vα +Vα ·Πα. (22)

The energy-weighted total stress tensor:

rα ≡
∫

1

2
Mαv2vv fα(x, v, t)d3v, (23)

and so on.
It is also convenient to define the following velocity moments of the collision

operator:
The frictional force:

F1α ≡
∫

Mαv′Cα( fα)d3v′. (24)

The heat frictional force:

F2α ≡
∫

Mαv
[

1

2
Mαv2 − 5

2

]
Cα( fα)d3v. (25)

The heating:

Qα =
∫

1

2
Mαv

′2Cα ( fα) d3v. (26)

Equations for the time evolution of these moments can be found by taking suc-
cessive velocity moments of the PKE, Eq. (11). After considerable algebra, these
are found to be as follows:
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Density (or mass) conservation:

∂nα

∂t
+ ∇ · (nαVα) = 0. (27)

Momentum conservation:

Mαnα

dVα

dt
= nαqα (E + Vα × B) − ∇ Pα − ∇ · Πα + F1α, (28)

where dV/dt = ∂V/dt + V · ∇V.
Energy conservation:

∂

∂t

(
3

2
Pα + 1

2
MαnαV 2

α

)
+ ∇ · Qα = (nαqαE + F1α) · Vα + Qα. (29)

Energy weighted momentum conservation:

∂Qα

∂t
= qα

Mα

{E ·
[
Pα + MαnαVαVα +

(
3

2
Pα + 1

2
MαnαV 2

α

)
I
]

+ Qα × B}

−∇ · rα + Tα

Mα

(
5

2
F1α + F2α

)
. (30)

Time-dependent equations for the higher moments Πα, qα , rα , etc. can also be
derived, although the procedure is quite tedious (as are the derivations of the expres-
sions above).

Equations (27, 28, 29, 30) are the plasma transport (or moment) equations. They
describe how the global quantities mass, momentum, energy, etc., move about (i.e.,
are transported) in the plasma. Knowledge of each successive moment provides
slightly more information about the distribution function fα . Knowing the zeroth
moment (the density, nα) allows us to reconstruct the distribution function at a
single point in the velocity space (for each point on configuration space); it gives
the average of fα. Similarly, knowing the zeroth and first moments simultaneously
(nα and Vα; four pieces of information) gives us information about four points in
velocity space, etc., and so on for the higher-order moments. It is easy to see that
a significant amount of information about the plasma has been lost in going from a
kinetic to a purely fluid description. However, we have gained a substantial simplifi-
cation in formulation, and transport models have proven useful in describing plasma
dynamics. (But you already know this because you have become experts in MHD!).
In the end, comparison of the predictions of theory with experiment are the only test
of efficacy of this approach.

We note that the moment equations inherit from the PKE, the property that the
evolution of any moment of the distribution function depends on the next higher
moment. The equation for the density (27) involves the velocity. The equation for
the velocity involves the pressure and the stress tensor, the equation for the pressure
involves Qα , and so on at each order. We have not escaped the problem of closure,
and we must find expressions for the higher-order moments in terms of the lower-
order moments.
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In the following sections, we will assume the “classical” closure of Braginskii,
and will make reference to the so-called “neo-classical” closures, which are low
collisionality forms that account for toroidal geometry. This will serve our purpose
of exhibiting the form of the fluid equations, and allowing an analysis to determine
the specific equations should be used in specific parameter regimes. However, we
remark that the questions of where (i.e., at what order) to close the fluid equations
and what are the closure relations are presently at the forefront of theoretical plasma
physics research, and there is no universal agreement on this issue.

Finally, we note that there is a separate set of fluid equations for each species
α and that the electromagnetic fields are to be interpreted in the average sense of
Sect. 2.

4 Fluid Models

4.1 Drift Velocities

The transport models of Sect. 3 represent the constituents of the plasma (ion species
and electrons) as continuous, interacting fluids characterized in configuration space
by the average values of various parameters. Some information about the velocity
distribution of the individual particles is contained in the higher-order moments.
Although the form of these equations is familiar, there are significant differences
between them and the ideal MHD equations are given in Table 1. In the following,
we shall try to understand how MHD fits into this picture, when it is valid, and how
MHD might be extended to describe more physical phenomena.

For simplicity of presentation, we restrict ourselves to a single positively charged
ion species (α = i , qα = e) and electrons (α = e, qα = −e), will neglect the
electron mass, since Me/Mi � 1, and will use Mi → M . (We could have defined
a center-of-mass velocity, but this is equal to the ion velocity to O(Me/Mi ). To an
excellent approximation, the ions carry all the momentum.) We will also leave out
all the frictional forces (the moments of the collision operator), not because they
are small or unimportant, but because they do not alter the conclusions that will
be drawn. We also drop specific mention of the energy equation(s), although their
presence is implicit in discussions.

Under these assumptions, the dynamical equations for ions and electrons are
∂ni

∂t
= −∇ · (ni Vi ), (31)

∂ne

∂t
= −∇ · (neVe), (32)

Mni
dVi

dt
= ni e (E + Vi × B) − ∇ Pi − ∇ · Πi , (33)and

0 = −nee (E + Ve × B) − ∇ Pe − ∇ · Πe. (34)

As stated above, ion and electron energy equations exist but will not be discussed here.
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In ideal MHD, Ohm’s law (the middle entry in Table 1) states that the (momen-
tum carrying) velocity perpendicular (to B) is related to the electric and magnetic
fields by

V⊥ = E × B
B2

. (35)

This is just the “E cross B” drift. It is sometimes called the MHD velocity, and is
labeled VE. (In ideal MHD, this is the only flow experienced by both the electrons
and ions.) Taking B × Eqs. (33) and (34), we find that the ion and electron perpen-
dicular velocities are

Vi⊥ = E × B
B2

+ M

eB2
B × dVi

dt
+ 1

ni eB2
B × ∇ Pi + 1

ni eB2
B × ∇ · Πi , (36)

and

Ve⊥ = E × B
B2

− 1

neeB2
B × ∇ Pe − 1

neeB2
B × ∇ · Πe. (37)

Clearly, the motions of the ions and electrons in the moment model are more compli-
cated than in MHD. We recognized the first term on the right-hand side of Eqs. (36)
and (37) as the MHD velocity, Eq. (35). It is independent of the sign or magnitude
of the electric charge and is experienced by both electrons and ions. The remaining
terms depend on the sign and magnitude of the electric charge and introduce addi-
tional physics. It is common to identify these terms as additional “drift velocities,”
e.g.,

The ion polarization drift:

Vpi ≡ M

eB2
B × dVi

dt
. (38)

The diamagnetic drift:

V∗i,e ≡ ± 1

ni eB2
B × ∇ Pi,e. (39)

The stress drift:

Vπ i,e ≡ ± 1

ni eB2
B × ∇ · Πi,e. (40)

There is also an electron polarization drift, but it is proportional to the electron mass
and has been neglected.

4.2 The Single-Fluid Formulation

Equations (31, 32, 33, 34) describe ions and electrons as separate fluids. It is con-
venient, and conventional, to transform to a frame moving with the center of mass
of the ions and electrons. For our purposes, this is the ion frame (since we have
neglected the electron mass). Adding Eqs. (33) and (34), we have

Mni
dVi

dt
= ρqE + J × B − ∇ P − ∇ · Π, (41)
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where we have defined the charge density as

ρq = e (ni − ne) (42)

and the current density as

J = e (ni Vi − neVe), (43)

and have further defined P = Pi + Pe and Π = Πi + Πe. Equation (41) is the
equation of motion for the combined system of ions and electrons, the so-called
single-fluid form. Using Eqs. (43) in (34) to eliminate Ve in favor of Vi yields

E = −Vi × B + 1

nee
(J × B − ∇ Pe − ∇ · Πe). (44)

This is referred to as the generalized Ohm’s law. The first term on the right-hand
side is identical to the ideal MHD Ohm’s law. The remaining terms represent new
physics that is not captured by the MHD model. There is no a priori reason for
neglecting them.

Equations (31), (32), (41), and (44), along with an appropriate energy equation
and closure relations, must be solved simultaneously with Maxwell’s equations,
Eqs. (12, 13, 14), using Eqs. (42) and (43). Unfortunately, this system is incon-
sistent. The fluid equations are Gallilean invariant (accurate to O(V/c)), while
Maxwell’s equations are Lorentz invariant (accurate to all orders of V/c). Either
we must use relativistic fluid equations or render Maxwell’s equations’ Gallilean
invariant (and justify this step). This is dealt with in the next section. We will see
that this step also eliminates the electric force from the equation of motion by intro-
ducing (in fact, requiring) the concept of quasi-neutrality.

4.3 Low Frequencies and Quasi-neutrality

We can understand how to obtain the low-frequency form of the equations by intro-
ducing dimensionless variables. We define V′ = V/V0, n′ = n/n0, t ′ = ω0t ,
∇′ = L∇, E′ = E/E0, B′ = B/B0, and J′ = J/J0. We will then ignore terms
that are O(V 2

0 /c2). Then, in terms of these variables, Faraday’s law is

∂B′

∂t ′ = − E0

ω0L B0
∇′ × E′, (45)

so that it is natural to choose E0 = ω0 B0L . The non-dimensional form of Ampére’s
law is

∇′ × B′ = μ0 J0L

B0
J′ + E0ω0L

B0c2

∂E′

∂t ′ . (46)

Choosing J0 = B0/μ0L and ω0 = V0/L results in

∇′ × B′ = J′ + V 2
0

c2

∂E′

∂t ′ , (47)
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so that the displacement current is O(V 2
0 /c2) and should be dropped from Ampére’s

law. The current density is

J′ = n0eV0

J0

(
n′

i V
′
i − n′

eV′
e

)
, (48)

and we choose V0 = J0/n0e = V 2
A/Ωi L , where V 2

A = B2
0/μ0 Mn0 is the square of

the Alfvén velocity, and Ωi = eB0/M is the ion cyclotron frequency. The Poisson
equation is then

∇′ · E′ = ρq L

ε0 E0
. (49)

The left-hand side is O(1), since we are using dimensionless variables. For the right-
hand side to be O(1) requires

ρq

n0e
= ε0 E0

n0eL
= V 2

0

c2
, (50)

where we have used the definitions above and the relationship c2 = 1/ε0μ0. This
implies that

ni − ne

n0
≈ O

(
V 2

0

c2

)
, (51)

which is the usual statement of quasi-neutrality. Quasi-neutrality is thus a require-
ment for consistency, rather than an independent assumption.

We can now estimate the size of the electrostatic forces. The ratio of the electro-
static force to the Lorentz force is, approximately,

∣∣ρq E
∣∣

|J × B| ≈
(

ρq

n0e

)(
V0n0e

J0

)
≈ O

(
V 2

0

c2

)
, (52)

so that the electrostatic forces are to be neglected.
We remark that quasi-neutrality does not imply that the electrostatic field must be

small. Even within MHD, situations can occur where ∇ × E = −∇ × (V × B) ≈ 0,
but ∇ ·E = −∇ · (V × B) �= 0. Because of the large factor of 1/ε0 on the right-hand
side of the Poisson equation, it does not take much charge imbalance to produce
significant electric fields, and we have shown above that these charge imbalances
are consistent with low-frequency models, such as MHD. Quasi-neutrality does not
mean that the charge density vanishes. It only means that the electrostatic force is
negligible compared with the Lorentz force, and therefore need not be included in
the dynamics. One can always calculate the charge density a posteriori by computing
the divergence of the electric field.

Returning to dimensional variables, and setting ne = ni = n, the dynamical
equations to be investigated are then as follows:

The continuity equation:

∂n

∂t
= −∇ · (nVi ) . (53)
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The equation of motion:

Mn
dVi

dt
= J × B − ∇ P − ∇ · Π. (54)

The generalized Ohm’s law:

E = −Vi × B + 1

ne
(J × B − ∇ Pe − ∇ · Πe). (55)

Faraday’s law:

∂B
∂t

= −∇ × E. (56)

Ampére’s law:

μ0J = ∇ × B, (57)

along with the energy equation and closure expressions. These have been called the
extended MHD equations.

4.4 Closures

We must now briefly discuss closures, which are expressions that relate high-order
velocity moments of the distribution function to lower-order moments. They contain
information about the velocity distribution of the individual plasma particles, and
deriving closure expressions usually requires solving the kinetic equation with some
approximations. These closures usually appear in the fluid equations acted upon by
a divergence operator. Examples are ∇ ·q, the divergence of the heat flux, and ∇ ·Π,
the divergence of the stress tensor. The heat flux thus represents the flux (or flow)
of heat in some direction, the stress tensor represents the flux (or flow) of some
component of momentum in some direction. They are inherent in the concept of
transport.

We know that thermal equilibrium is characterized by the velocity distribution
that is Maxwellian, and is parameterized by a density, a velocity, and a temperature.
In cases where the macroscopic variables (e.g., temperature, density, etc.) vary in
space, we can concieve of local Maxwellians that depend on the local values of
these parameters. The system tends toward such states on what is called the relax-
ation time, which is usually related to the interaction of nearest neighbor particles
(e.g., collisions). The process of relaxation is described macroscopically by trans-
port, It is not surprising, then, that the fluxes encapsulated by the closures arise from
deviations of the distribution function from local Maxwellian.

When the deviations from local Maxwellian are small, the kinetic equations may
be linearized and solved, and expressions for the fluxes may be obtained. This pro-
cedure usually requires some further assumptions, usually regarding the existence of
one or more small parameters. These parameters usually (but not always) appear as
the ratio of some quantity characterizing microscopic processes to a corresponding
macroscopic parameter. For example, it might be the ratio of the mean-free path to
the macroscopic gradient scale length, the inverse of the collision frequency to the
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macroscopic time scale, or the particle gyro-radius to the macroscopic length scale.
An exception is the ratio of the collision frequency to the gyro-frequency, which
relates two microscopic parameters but may be small nonetheless.

In spite of these simplifying assumptions, these calculations are extremely com-
plicated and have been carried out only in certain parameter regimes. There is no
general solution for the closures of a strongly magnetized plasma. Here we will
merely summarize some closure relations that are valid under the assumption that
the mean-free path is small compared with the macroscopic scale length. These are
called classical, or collisional, closures. We will also briefly present some results
that are valid in lower collisionality regimes, and account for toroidal effects in
fusion confinement devices.

It is customary to express the fluxes (flows) in terms of three orthogonal com-
ponents: one parallel to B, one perpendicular to B, and one in the “cross” direction
that is mutually perpendicular to the others. The parallel component is generally
inversely proportional to the collision frequency (so that it decreases as the collision
frequency increases), the perpendicular component is proportional to the collision
frequency, and the “cross” component is independent of the collision frequency. The
“cross” component is therefore not dissipative; it does not increase the entropy. It is
often called the “gyro-” component because it arises from energy transport due to the
gyro-motions of individual particles about the magnetic field, which are completely
reversible.

Assuming that the mean-free path is small compared with the macroscopic scale
length, and that the collision frequency is small compared with the gyro-frequency
(i.e., the plasma is strongly magnetized), the classical closure for the heat flux for
species α is

qα = qα‖ + qα∧ + qα⊥

= −κα
‖ ∇‖Tα − κα

∧b × ∇Tα − κα
⊥∇⊥Tα, (58)

where ∇‖ = bb · ∇, ∇⊥ = −b × (b × ∇) = (I − bb) · ∇, and b = B/B. Note that
this relates the the third velocity moment (q) to the gradient of the second moment
(T ). It is the gradient in quantities that drive transport. The coefficients, called the
thermal conductivities, of ions and electrons are

κα
‖ = Aα

nαTα

Mανα

, (59)

κα
∧ = Bα

nαTα

MαΩα

, (60)

and

κα
⊥ = Cα

nαTανα

MαΩ2
α

, (61)

where Ai = 3.9, Ae = 3.2, Bi = Be = 5/2, Ci = 2, Ce = 4.7, and να is the
collision frequency. Note that, since Me � Mi , the parallel heat flux is dominated
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by the electrons, but the perpendicular heat flux is dominated by the ions (since
Ωi � Ωe). The “cross” components are comparable.

From the theory of elasticity, we know that in any material, the linear relation
ship (if it exists) between the stress tensor and the rate of strain tensor is given by
the generalized Hookes’ law

Πi j = Ei jkl Wkl, (62)

where

Wkl = ∂Vl

∂xk
+ ∂Vk

∂xl
− 2

3

∂Vn

∂xn
δkl (63)

is the rate of strain tensor and Ei jkl is the elastic constant tensor. In isotropic mate-
rials, it is a constant called Young’s Modulus. In an anisotropic medium, like a
magnetized plasma, it is defined by

Ei jkl ≡ ∂Πi j

∂Wkl
. (64)

Equation (63) can be written in a dyadic form as

W = ∇V + ∇VT − 2

3
∇VI, (65)

where (. . . )T denotes the transpose.
The stress tensor can be calculated from the linearized kinetic equation in a man-

ner analogous to the heat flux and under the same conditions. The classical result
for the ion stress is

Π = Π‖ + Π∧ + Π⊥, (66)

with

Π‖ = −3

2
η0 (b · W · b)

(
bb − 1

3
I
)

, (67)

and

Π∧ = −η3

2
[b × W · (I + 3bb) + transpose] . (68)

Here, η0 = 0.96nTi/νi and η3 = nTi/2Ωi . The classical expression for Π⊥ is
even more complicated and will not be given here. In any case, it is proportional
to the collision frequency and can often be ignored in high-temperature plasmas.
The classical electron stress is smaller by a factor of the mass ratio and is usually
excluded from extended fluid models.

Equation (68) is often called the gyro-viscous stress, and the coefficient η3 is
called the gyro-viscosity, although it is independent of the collision frequency and
therefore is not dissipative. Like the “cross” component of the heat flux, it rep-
resents momentum transport due to the gyro-motion of individual particles. The
gyro-viscous stress plays an important role in extended fluid models.
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We remark that, at least formally, the gyroviscous stress should contain an addi-
tional term proportional to the gradient of the heat flux,

Πq = 2

5Ωi

[
b × Wq · (I + 3bb) + transpose

]
, (69)

where

Wq = ∇q + ∇qT − 2

3
∇qI. (70)

As these terms are generally not included in the extended fluid models, their full
effect on plasma dynamics is unknown at this time.

Finally, we mention that other expressions valid for a low collisionality plasma
in a torus (where trapped particle effects can be important) have been derived. These
are called neo-classical closures. Most of these are expressions for the flux surface
average of some component of the viscous force, rather than expressions that are
locally valid. For example, a neo-classical expression for the flux surface average of
the parallel ion viscous force is

〈
B · ∇ · Πneo

i

〉 = Mn
〈
B2
〉
μi

Vθi

Bθ

eθ , (71)

where θ represents the poloidal direction in a torus and μi is the “neo-classical
damping coefficient.” More complicated expressions for both ions and electrons
have been given. They play an important role in extended fluid models of well-
confined plasmas.

4.5 Ordered Fluid Equations

We are now in a position to identify different fluid models that are subsets of
extended MHD. Again, this will be facilitated by introducing non-dimensional vari-
ables. This will lead to the identification of a small parameter, and the remaining
non-dimensional constants can then be ordered as large or small with respect to this
parameter. We will only retain terms in the equations that are of lowest order in this
parameter.

As in Sect. 4.3, we measure the density in units of n0, the velocity in units of V0,
the magnetic field in units of B0, the electric field in units of E0 = V0 B0, the current
density in units of J0 = n0eV0, the time in units of ω−1

0 , and the length in units of
L = |∇−1|. We measure the pressure in units of MnV 2

thi, where Vthi = √
2Ti/M

is the ion thermal speed. Note that neither the characteristic velocity V0 nor the
characteristic frequency ω0 have been specified. They will be used to “order” the
equations.

We define the non-dimensional parameters

ε = ω0

Ωi
, (72)

ξ = V0

Vthi
, (73)
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and

δ = ρi

L
, (74)

where ρi = Vthi/Ωi is the ion gyro-radius. In a strongly magnetized plasma, δ is
always a small parameter. We will order ε and ξ as large or small compared with δ

to obtain different fluid models.
With these normalizations and definitions, the extended MHD equations can be

written as

ε
∂n

∂t
= −ξδ∇ · (nVi ) , (75)

n

(
εξ

∂Vi

∂t
+ ξ2δVi · ∇vi

)
= ξJ × B − δ∇ P − ξ

μ

Ωi
bb · ∇Πneo

i

−ξδ2

(
1

ν/Ωi
∇ · Π‖ + ∇ · Π∧ + ν

Ωi
∇ · Π⊥

)
, (76)

ξE = −ξVi × B + ξ
1

n
J × B − δ

1

n

(∇ Pe + ∇ · Πneo
e

)
, (77)

along with the Maxwell equations

ε
∂B
∂t

= −ξδ∇ × E, (78)

J = ξ∇ × B, (79)

and the constitutive relation

J = n (Vi − Ve) . (80)

We are now ready to order the equations. In what follows we will drop the neo-
classical stresses, not because they are not important, but because they apply to spe-
cialized geometry (generally a tokamak), and they do not provide further insight into
the various fluid models. Further, the factor of 1/(ν/Ωi ) multiplying the parallel ion
viscosity is an indication that the classical formalism is breaking down in the limit of
ν/Ωi → 0, so we also disregard this term as unphysical. In practical calculations, it
is often replaced by a heuristic viscosity proportional to ∇2Vi (although this is also
unphysical).

4.5.1 The Hall MHD Ordering (ξ ∼ 1/δ, ε ∼ 1)

We begin by considering fast flows and relatively high frequencies. We thus order
ξ ∼ 1/δ and ε ∼ 1. We are allowing flows faster than the ion thermal velocity
(supersonic) and frequencies on the order of the ion gyro-frequency. We also assume
ν/Ωi ∼ δ. Then the extended MHD equations become

∂n

∂t
= −∇ · (nVi ) , (81)

J × B = n
dVi

dt
+ O

(
δ2) , (82)
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and

E = −Vi × B + 1

n
J × B + O

(
δ2
)
. (83)

The second term on the right-hand side of Eq. (83) is called the Hall term. Since,
from Eq. (82), J × B ∼ O(1), it must be included when studying this parameter
regime.

Equation (82) indicates that in this regime, there are unbalanced electromagnetic
forces that are O(1) and pressure forces do not play a significant role in the dynam-
ics. These plasmas are far from confinement, as is consistent with the fast flows and
high frequencies allowed by the ordering.

4.5.2 The MHD Ordering (ξ ∼ 1, ε ∼ δ)

We now consider flows that are of the order of the ion thermal speed and frequencies
that are less than the ion gyro-frequency. We thus order ξ ∼ 1 and ε ∼ δ. The
result is

∂n

∂t
= −∇ · (nVi ) , (84)

J × B = δ

(
n

dVi

dt
+ ∇ P

)
+ O

(
δ2
)
, (85)

and

E = −Vi × B + 1

n
J × B − δ∇ Pe. (86)

However, from Eq. (85), the second term on the right-hand side of Eq. (86) is O(δ).
Therefore, to the lowest order in δ, Ohm’s law is

E = −Vi × B. (87)

This is just the ideal MHD Ohm’s law.
Plasmas where the MHD model is valid are “force-free” to O(δ). Small imbal-

ances in the Lorentz force appear as accelerations and pressure gradients. These
plasmas are better confined than those considered in Sect. 4.5.1, but there can still
be considerable dynamics (e.g., flows on the order of the ion sound speed). The ion
velocity is just the MHD (or E × B) velocity defined in Sect. 4.1.

4.5.3 The Drift Ordering (ξ ∼ δ, ε ∼ δ2)

We now consider a model that applies slow flows and very low frequencies, and
we set ξ ∼ δ and ε ∼ δ2. This is the so-called drift ordering, because the relative
drifts of the different particle species (see Sect. 4.1) play an important role. We will
see that it applies to plasmas that only deviate slightly from force balance. These
plasmas are therefore well confined. It is not surprising that this ordering has been
successfully applied to the onset of instabilities in tokamak plasmas.
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The equations of the drift ordering are

∂n

∂t
= −∇ · (nVi ) , (88)

− ∇ P + J × B = δ2

(
n

dVi

dt
+ ∇ · Π∧

)
, (89)

and

E = −Vi × B + 1

n
(J × B − ∇ Pe) . (90)

The pressure and Lorentz forces are in balance to O(δ2), so that plasmas that are
well described by this model can deviate only slightly from force balance. Further,
note that the gyro-viscosity now enters at the same order as the ion inertia, so that it
cannot be ignored.

4.5.4 The Drift Model

While the drift ordering introduces the lowest order finite-Larmor radius (FLR) cor-
rections to the ideal MHD model (these corrections are the terms proportional to δ2),
it leads to more complicated equations and provides no special insights. In contrast,
the drift model makes use of the velocity decomposition given in Sect. 4.1, along
with a remarkable result called the gyro-viscous cancellation, to provide a simplified
set of equations that have provided significant insight into the properties of tokamak
plasmas.

Essentially, the drift model makes a velocity transformation to a frame moving
with the MHD velocity VE (see Sect. 4.1):

Vi = V‖i + VE + V∗i + O
(
δ2
)
, (91)

and

Ve = Vi − 1

n
J = V‖i + VE + V∗i − 1

n
J + O

(
δ2
)
. (92)

The idea is to arrive at a set of equations written in terms of the MHD velocity VE

that look like the MHD equations, plus corrections.
Substituting directly into the generalized Ohm’s law, Eq. (90), we find

E = −VE × B − 1

n
∇‖ Pe + 1

n

(−∇‖ P + J × B
)+ O

(
δ2
)
. (93)

But, from Eq. (89), the third term on the right-hand side of this equation is O(δ2),
so that Ohm’s law in the drift model is, to lowest order in δ, is

E = −VE × B − 1

n
∇‖ Pe. (94)

The momentum equation becomes, to the second order in δ,

δ2

[
n

d

dt

(
V‖i + VE

)+ n
dV∗i

dt
+ ∇ · Π∧

]
= −∇ P + J × B. (95)



www.manaraa.com

Appendix 303

One reason for the utility of the drift model is an enormous simplification of the
equation of motion that occurs because, in the proper reference frame, the ∇ · Π∧
algebraically cancels a significant fraction of the advective acceleration nVi · ∇Vi .
This gyro-viscous cancellation is usually written

n

(
∂V∗i

∂t
+ Vi · ∇V∗i

)
+ ∇ · Π∧ ≈ ∇χ − bV∗i · ∇V‖i , (96)

where χ = −Pi b ·∇ ×V⊥i . (We remark that the gyro-viscous cancellation has only
been quantitatively derived in simple geometry, such as a slab, and is otherwise to
be considered approximate. Nonetheless, it is widely used in the theory of tokamak
plasmas.)

Using the gyro-viscous cancellation, and after some algebra, the equations of the
drift model can be written in terms of parallel and perpendicular (to B) components as

∂n

∂t
+ ∇ · nVE = −∇ · n

(
V∗i + V‖i

)
, (97)

nδ2

(
dVE

dt

)

MHD

= −nδ2
(
V∗i + V‖i

) · ∇VE − ∇⊥
[
P
(
1 + δ2χ

)]+ J × B, (98)

and

E = −VE × B − 1

n
∇‖ Pe, (99)

where (d/dt)MHD = ∂/∂t + VE · ∇.
We have achieved the goal of obtaining a set of equations that look very much

like the ideal MHD equations with lowest-order corrections.
When interpreting these equations, and their solutions, one must be aware that

the dependent velocity variable, VE, is not the true flow velocity of the fluid, but the
E×B velocity. There are are several further caveats. In the first place, the derivation
formally admits only slow flows, which is consistent with the result of force balance
through first order in δ. Second, the assumption of very low frequency may limit
the validity of the model to phenomena that evolve much slower than the Alfvén
transit time L/VA. Acceptable frequencies are of the order of the diamagnetic drift
frequency ω∗i ∼ V∗i /L � ωA. Finally, the form of the gyro-viscous cancellation
used here assumes a uniform magnetic field or at least a sheared slab. There is no
generally accepted form that is much less restrictive.

4.5.5 The Transport Model

We briefly mention the tansport model, which is a special case of the drift ordering
(see Sect. 4.5.3) that retains only corrections that are O(δ). At this order, there is
complete force balance and the only corrections are to Ohm’s law. The equations of
the model are

∂n

∂t
= −∇ · (nVi ) , (100)

∇ P = J × B, (101)
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E = −V × B + 1

n
∇⊥ Pi , (102)

and

∂B
∂t

= −∇ × E. (103)

Inertia has been ordered out of the system and with it all waves. In an axisymmetric
equilibrium, the flows will be only perpendicular to the flux surfaces. Eq. (101)
becomes the Grad–Shafranov equation, while, from Eq. (102), the flux of particles is

nV⊥i = n
(
VE + V∗i

)
. (104)

When this expression is used with an equation of state, such as P = nT , Eq. (100)
becomes a diffusion equation for the density. Field diffusion results from Eq. (103)
if the resistivity is included in Ohm’s law, Eq. (102).

The transport model is widely used in studies of the very long time scale evolu-
tion of tokamaks.

5 Properties of the Extended MHD Model

We have now derived a set of fluid equations that encapsulate the ideal MHD model,
and extend it to include the lowest-order effects of relative particle drifts and finite
ion Larmor radius (FLR). These are Eqs. (53, 54, 55, 56, 57). You are all now experts
in the dispersion (wave propagation) and stability properties of the MHD equations.
Here we investigate how the new correction terms affect these properties.

With regard to wave propagation, the most striking effect of the new terms is
to introduce a new class of waves that are dispersive. In MHD, all waves (sound
waves, and shear and compressible Alfvén waves) have dispersion relations of the
form ω2 ∼ k2, so that all wavelengths propagate with the same phase velocity. In
extended MHD, there are now modes of propagation with the property ω2 ∼ k4,
so that shorter wavelengths have faster phase velocity. These are called whistler,
kinetic Alfvén (KAWs), and gyro-viscous (for lack of a better term) waves.

With regard to stability, the most striking feature is that force operator ceases to
be self-adjoint, so that all the nice properties associated with the ideal MHD energy
principle are lost. However, the implications of the new terms for stability are easy
to see heuristically. Ignoring pressure and stress forces, the linearized momentum
equation and Ohm’s law in the extended MHD model are

Mn0
∂V
∂t

= 1

μ0
(∇ × B) × B0, (105)

and

E = −V × B0 + M

e

∂V
∂t

, (106)

where we have used the momentum equation to eliminate J × B0 in favor of ∂V/∂t
in Ohm’s law. As in ideal MHD, we can introduce the displacement ∂ξ/∂t = V,
and assuming a time dependence ∼ exp iωt , we have
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− ω2 Mn0ξ = FMHD (ξ ) + ωF2F (ξ ) , (107)

where FMHD (ξ ) = ∇ × [∇ × (ξ × B0)] × B0/μ0 is the (self-adjoint) ideal MHD
force operator, and F2F = (i M/eμ0)∇×(∇ × ξ )×B0 is the two-fluid force operator.
This comes from the additional terms in Ohm’s law. However, it is not self-adjoint,
so that generally the eigenvalues ω2 will be complex.

Dotting Eq. (107) with ξ∗ and integrating over all space yields, at least heuristi-
cally,

ω2 − ω∗ω + γ 2
MHD = 0, (108)

where γMHD is the ideal MHD growth rate (for an unstable configuration) and we
identify ω∗ = (1/μ0n0e)

∫
ξ ∗ · F2F (ξ ) d3x as the drift frequency. Equation (108)

appears often in plasma physics and is a common form for the extended MHD
dispersion relation. The solution is

ω = 1

2
ω∗ ± 1

2

√
ω2∗ − 4γ 2

MHD, (109)

which is generally complex. Note, however, that the roots become purely real (i.e.,
stable) when

ω∗ > 2γMHD, (110)

so that unstable MHD modes are stabilized if the drift frequency is large enough.
This is a fairly general conclusion that holds under a variety of more complex cir-
cumstances. (However, this stabilization may be lost if compressibility is taken into
account.)

5.1 Dispersive Waves

Consider first the effect of the Hall term (the J × B term in the generalized Ohm’s
law). The linearized electric field for the case of a uniform, straight magnetic field
is then E = (1/n0e)J × B0, and Faraday’s law becomes

∂B
∂t

= − B0

μ0n0e
b · ∇ (∇ × B) . (111)

A wave equation can be found by taking the time derivative of Eq. (111). The
result is

∂2B
∂t2

= −
(

B0

μ0n0e

)2

(b · ∇)2 ∇2B. (112)

This differs from the usual wave equation in that it has two time derivatives on
the left, but four space derivatives on the right. Assuming spatial dependence ∼
exp i (k · x + ωt), the algebraic dispersion relation is

ω2 = −
(

V 2
A

Ωi

)2

k2
‖k2. (113)
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These are called whistler waves. They propagate parallel to the magnetic field, and
the shorter wavelengths have larger phase velocity. They were first discovered (and
named) during the early days of radio, when “whistles” proceeding from high to low
frequencies were heard in the noise. They were just these waves propagating down
the earth’s magnetic field lines.

Whistler waves follow directly from Ohm’s law, which is the electron equation
of motion. They are thus an electron phenomenon, and occur at zero pressure. When
the pressure is finite, other dispersive waves arise when the equation of motion
and the (unspecified here) energy equation are taken into account. These are called
kinetic Alfvén waves or KAWs. They are also dispersive. We will not discuss them
further here.

Recall that the gyro-viscosity is non-dissipative. In fact, it also introduces a new
family of dispersive waves. The gyro-viscosity is given in Eq. (68). For the case
of a uniform plasma in a straight, uniform magnetic field in the z-direction, the
expressions for the gyro-viscous force are

(∇ · Π)x = −η3∇2
⊥Vy − η4

∂

∂z

(
∂Vy

∂z
+ ∂Vz

∂y

)
, (114)

(∇ · Π)y = η3∇2
⊥Vx + η4

∂

∂z

(
∂Vx

∂z
+ ∂Vz

∂x

)
, (115)

and

(∇ · Π)z = −η4
∂

∂z

(
∂Vx

∂y
− ∂Vy

∂x

)
, (116)

where η3 = nTi/2Ωi and η4 = 2η3. With constant density, and again assuming
exp i (k · x + ωt) dependence for all quantities, the linearized extended MHD equa-
tions become

iωMn0Vx = −ikx P + i B0

μ0
(kz Bx − kx Bz) − (η3k2

⊥ + η4k2
z

)
Vy −η4kykz Vz, (117)

iωMn0Vy = −iky P + i B0

μ0

(
kz By − ky Bz

)+ (η3k2
⊥ + η4k2

z

)
Vx −η4kx kz Vz, (118)

iωMn0Vz = −ikz P − η4kykz Vx + η4kx kz Vy, (119)

iωBx = ikz B0Vx + B0

μ0n0e
kz
(
ky Bz − kz By

)
, (120)

iωBy = ikz B0Vy + B0

μ0n0e
kz (kz Bx − kx Bz), (121)

iωBz = −iky B0Vy − ikx B0Vx + B0

μ0n0e
kz
(
kx By − ky Bx

)
, (122)
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and

iωP = −iΓP0kx Vz, (123)

where k2
⊥ = k2

x + k2
y and Γ is the adiabatic index. (We have assumed an adiabatic

energy equation.) The terms proportional to B0/μ0n0e, η3, and η4 are the new terms
from extended MHD.

The dispersion relation can be obtained by setting the determinant of Eq. (117–
123) to zero. This is relatively easy for the special cases of parallel and perpendicular
propagation. For the case of parallel propagation (kx = ky = 0), we have, after some
algebra,

(ω ± ω4) (ω ± ωW) = ω2
A, (124)

where ωA = |kz|VA is the Alfvén frequency, ωW = (ωA/Ωi )2Ω = (ρi kz)2/β is
the whistler frequency, and ω4 = (1/2)(ρi kz)2 is the gyro-viscous frequency (for
lack of a better term). Note that Eq. (124) is of the same general form as Eq. (108).
The two ± signs represent left- and right-propagating waves that have left and right
polarization. For ρi kz � 1, as is required for the validity of the extended fluid
model, the dispersion relations for these waves are of the form

ω = kz VA

[
1 + 1 + β

2
√

β
(ρi kz)

]
. (125)

The gyro-viscosity introduces an O(β) correction to the whistler wave.
For the case of perpendicular propagation (ky = kz = 0), the vanishing of the

determinant of Equations (117–123) leads to the relationship

ω2

ω2
s + ω2

A

= 1 + ω2
3

ω2
s + ω2

A

, (126)

where ω2
s = c2

s k2
x is the sound frequency and ω3 = ω4/2. For ρi kx � 1, the

solution is

ω2 = k2
x V 2

A

[
1 + Γβ

2
+ β

16
(ρi kx )2

]
. (127)

This is clearly a dispersive modification to the fast magneto-acoustic wave.

5.2 Stability

From Eqs. (108) and (109), we expect extended MHD to have a stabilizing effect on
unstable MHD modes. This can be illustrated in the specific case of the gravitational
interchange mode (or g-mode) in a uniform magnetic field.

We consider slab geometry, with the magnetic field in the z-direction and gravity
in the y-direction. We assume an exponential density profile ρ(y) = ρ0 exp(y/L),
so that dρ/dy = ρ/L . The equilibrium condition is

d P0

dy
= −Mn0g. (128)



www.manaraa.com

308 Appendix

The dynamical equations are

∂n

∂t
= −∇ · nV, (129)

Mn
dV
dt

= −∇
(

P + B2

2μ0

)
+ Mng − ∇ · Π, (130)

and

E = −V × B + 1

ne

(
Mn

dV
dt

+ ∇ Pi − Mng + ∇ · Π

)
, (131)

where, again, we have used the momentum equation to eliminate J×B in Ohm’s law.
The magnetic field only explicitly enters the dynamics through the total pressure
PT = P + B2/2μ0. Therefore, as far as the dynamics are concerned, perturbations
to the magnetic field can be ignored and all perturbed pressure forces can be viewed
as entering through the pressure P . It is then a significant simplification to assume
that all perturbations are electrostatic, so that we can set ∇ × E = 0. Assuming that
the ions are isothermal, the result is

∇ · V = − 1

Ω
ez ·
(

dV
dt

− 1

ΩMn2
∇n × ∇ · Π

)
, (132)

where Ω is the ion gyro-frequency. This condition closes the system of equations.
In ideal MHD, ∇ · V = 0. In extended MHD, the velocity is non-solenoidal.

Equations (129), (130), and (132) can then be linearized and solved. The ideal
MHD result is well known. The system is always unstable, and the growth rate is
independent of the wave number:

γ 2
MHD = g

L
. (133)

For extended MHD, the result of a more tedious calculation yields the equation

ω2 −
(

gk

Ω
+ η3k

Mn0L

)
ω + γ 2

MHD = 0, (134)

The first term in the coefficient of ω results from the additional two-fluid terms in
Ohm’s law. The second term in the coefficient represents the effect of gyro-viscosity.
This equation is of the form of Eq. (108). We therefore expect the g-mode to be
stabilized for wave numbers such that

k >
g/L

g/Ω + η3/Mn0L
. (135)
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This high-k stabilization by extended MHD effects is an important aspect of toka-
mak operation and is completely missed by the MHD model. The g-mode is there-
fore an important paradigm for understanding this effect in a situation that is simple
enough to study analytically. (In a toroidal plasma, the field line curvature force
B · ∇B roughly corresponds to g in the preceding discussion.)

6 Current Research Problems

Problems requiring the application of the extended MHD model are at the forefront
of current theoretical research in strongly magnetized plasmas. Several of these are
described below.

6.1 Magnetic Reconnection

In ideal MHD, Ohm’s law prevents the separate motion of the fluid and the mag-
netic field. This implies that the topology, or connectivity, of the magnetic field
must remain invariant. This constraint is broken in the presence of even the smallest
amount of resistivity, and the motions of the fluid and the field become decoupled.
This allows new motions that can change magnetic topology. This process is called
magnetic reconnection.

In ideal MHD, there is only one characteristic length scale in the problem, the
macroscopic scale length. In resistive MHD (the ideal MHD Ohm’s law with the
addition of ηJ), there are two scale lengths: one set by the ideal MHD dynamics
and the other by resistive diffusion. This allows the possibility of coupling long
wavelength ideal MHD motions that remain “frozen in” the plasma with magnetic
field diffusion on small length scales that allows for changes in topology. The result
is a magnetic reconnection process whose rate scales as some fractional power of the
resistivity. The limiting physical factor is the rate at which plasma can be expelled
from the reconnection region. Since the ions and electron motions are coupled in
single-fluid models, this is limited to approximately the local Alfvén speed. This
rate is much smaller than is commonly observed in both laboratory and astrophysical
plasmas.

Extended MHD introduces additional symmetry breaking terms (the two-fluid
terms) into Ohm’s law that allow for an additional characteristic length scale. On
this length scale, the electron and ion motions become decoupled. This allows for the
fluid to exit the reconnection region more rapidly, thus increasing the reconnection
rate. While there is no universal agreement on these issues, researchers hope that
this process can help to explain the rapid reconnection rates observed in tokamaks,
solar flares, and the earth’s magnetosphere.

6.2 Magnetic Island Evolution

Tearing modes are linear instabilities that involve magnetic reconnection. They
involve a coupling between large-scale Alfvén waves and small-scale resistive
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diffusion. The associated topology changes produce magnetic islands. They grow
slowly (as a fractional power of the resistivity) and saturate (stop growing) at rela-
tively small amplitude, often much smaller than is observed in experiments. Some-
times, also, magnetic islands are observed to grow in situations that are predicted to
be stable within the single-fluid resistive MHD model.

In resistive MHD, the nonlinear evolution of the width of a magnetic island, W ,
is governed by a first-order differential equation of the form dW/dt = AW + B,
where A is related to the bending of the field lines outside the inner (resistive) layer
and B is a constant that is related to the instability drive. (The equation with A = 0 is
known as the Rutherford equation and with A �= 0 as the modified Rutherford equa-
tion.) The final island width Ws is found by setting dW/dt = 0. Since the resulting
equation is linear in W , there is only one solution. (The Rutherford equation itself
says nothing about the saturated width.)

When extended MHD effects, including the neo-classical terms, are taken into
account, the Rutherford equation is further modified and becomes dW/dt =
A(W ) + B, where A(W ) is a nonlinear function of the island width. This allows for
the possibility of multiple island widths at which dW/dt = 0. An interesting case
involves two solutions, W1 and W2, say. When W < W1 or W > W2, dW/dt < 0,
and when W1 < W < W2, dW/dt > 0. Thus an island with width W < W1

will decay to zero (i.e., it is stable) and an island with W > W2 will decay to W1.
However, an island in the range W1 < W < W2 will grow to have a width W = W2.
As in the single-fluid case, the growth is algebraic (∼tn) rather than exponential.
These modes thus require a finite initial island width, or seed island, in order to
grow. They are purely a nonlinear effect; they are linearly stable. These are called
neo-classical tearing modes or NTMs.

This discussion raises two questions: How can you get a finite width seed island
in a system that is linearly stable? and What is the driving force for the instability?

With regard to the initial seed island, there are at least two possibilities. The first
is that it is nonlinearly driven by the interaction of some other instable modes. For
example, neo-classical tearing modes in tokamaks are sometimes observed to grow
after fast sawtooth crashes. The large amplitude kink modes that are responsible
for the sawtooth may nonlinearly generate a neighboring perturbation with finite
amplitude that forms the seed island. The second possibility is that a slowly growing
unstable resistive mode simply attains large enough amplitude to trigger the neo-
classical mode. Not all NTMs are associated with sawtooth crashes; some seem to
appear spontaneously.

With regard to the drive for the instability, recall that, in the extended MHD
model, Ohm’s law has terms proportional to the electron pressure gradient and
the electron stress tensor. In toroidal geometry, these contributions to the electric
field can drive a toroidal current called the bootstrap current, so called because it
is self-generated and not dependent on an applied voltage. A substantial fraction
of the toroidal current in a tokamak is bootstrap. Also recall that anisotropic elec-
tron heat flux tends to equilibrate the temperature, and hence the pressure on a flux
surface. Now consider the case of a magnetic island of finite width. It has its own
“internal” flux surfaces. There is an equilibrium pressure gradient across the island.
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Perpendicular heat flux tends to maintain this gradient. However, parallel heat flux
tends to equilibrate the pressure within the island. The pressure distribution within
the island is determined by the balance of these two competing processes. (These
enter into the function A(W ), above.) If the island is large enough, equilibration
within the island will win out over the equilibrium perpendicular heat flux, and
the pressure gradient within the island will decrease. This lowers the drive for the
bootstrap current. It turns out that the resulting perturbation to the total current is
such as to cause the island to grow. Thus the presence of a critical seed island width
is determined by competition between equilibrium perpendicular heat flux and par-
allel heat flux within the island, and the growth if the island is driven by the resulting
perturbation to the bootstrap current.

The quantitative theory of the processes just described requires substantial math-
ematical fortitude and assumptions that limit the theoretical model to islands that are
very small (but nonetheless finite). Since they invoke neo-classical closures of the
fluid equations, they almost always involve flux surface averages, rather than local
quantities. The details of the dynamics of these magnetic islands when variations
within the island are accounted for are unknown and are a topic of considerable
research.

6.3 Relaxation and Dynamo

Many systems naturally evolve toward states that exhibit some form of order on long
length scales. Examples are the formation of isolated vortices in two-dimensional
Navier–Stokes flow, the appearance of zonal flows in rotating fluids, the evolution of
solitons in fluid and optical systems, and the characteristic structure of the magnetic
field in laboratory plasma experiments. In all cases, long range order in one quantity
is accompanied by short range disorder in another quantity, so that overall entropy
increase is assured. The ordered states are robust in that their detailed structure
remains relatively invariant across experimental realizations: the properties of these
preferred states are independent of the way the system is initially prepared. This
phenomenon is generally called self-organization.

Systems exhibiting self-organization have several common features. Their dynam-
ics are described by nonlinear partial differential equations with dissipation; these
equations admit quadratic (or higher order) quantities that are conserved in the
absence of dissipation; and these conserved quantities decay at different rates when
dissipation is taken into account. In the absence of dissipation (or on short enough
time scales) the conserved quantities place severe constraints on the evolution of this
ideal system. With the inclusion of dissipation, the ideal invariants decay. However,
one (or a few) of these invariants decay slowly relative to the rest of the ideal invari-
ants. Due to the robust nature of these privileged invariants, a variational principle is
often invoked to predict the resulting global state with the slowly decaying invariants
treated as a constraint condition.

In the resistive MHD model, the plasma is assumed to be a single, electrically
conducting, charge neutral fluid that experiences both pressure and electromagnetic
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(Lorentz) body forces. The electromagnetic field is described by the pre-Maxwell
equations, in which the displacement current has been dropped from Amperes law.
The dynamics of the fluid and the electromagnetic field are coupled by Ohms law,
which relates the total electric field as seen by the moving fluid to the Ohmic
(resistive) electric field, E + V × B = ηJ. For the case of ideal MHD (η = 0),
these equations admit an infinite number of conserved quantities. These are the
total energy (assuming zero mean flow) and the infinite number of integrals Kl =∫

Vl
A·BdV , l = 1, 2, . . . , called the Wöltjer invariants. The integrals are to be taken

over the volume of each and every flux tube in the plasma, and B = ∇ × A. (These
integrals are related geometrically to the local linkage of flux tubes. This topologi-
cal property is preserved in ideal MHD where flux tubes retain their integrity. The
invariance of these integrals is determined completely by the assumption of ideal
MHD [Ohms law with η = 0]). The variational problem is then to minimize the
energy W with the constraint that each of the infinite number of Wöltjer integrals
remains constant. (Clearly, the unconstrained minimization of the energy leads to the
trivial state B = P = 0 .) The result of the constrained minimization is that the mag-
netic induction must satisfy the equation ∇ × B = μ0λ(r)B, with B · ∇λ = 0. Mag-
netic fields that satisfy these conditions are called force-free, since the Lorentz force
vanishes. The second condition, which comes from the requirement that ∇ · B = 0,
is a statement that λ is constant along field lines.

In 1974, J. B. Taylor recognized a flaw in this variational approach. In an ideal,
perfectly conducting fluid, flux tubes retain their integrity for all times. Thus, when
the system is prepared (e.g., during the gas breakdown phase of an experiment),
there is a value of λ associated with each flux tube in the initial state, and the details
of the corresponding spatial distribution of are uncontrollable; they will vary greatly
between different realizations of the experiment. Since λ must remain constant along
flux tubes, the function λ(r), and hence the magnetic field, will depend in a detailed
manner on the way the system was prepared. The final state is thus not independent
of the initial conditions, in contradiction to the observed properties of relaxed (or
self-organized) states. The infinite number of constraints implied by ideal MHD
limits the evolution of the system.

Taylor hypothesized that in a real plasma with large but finite electrical conduc-
tivity, the resulting breaking and merging of the individual flux tubes would render
almost all of the Wöltjer invariants invalid. However, if the system is bounded by a
perfectly conducting boundary, then the only flux tube that will retain its integrity is
the one tangent to the conducting boundary. Under these conditions, only the single
invariant K0 = ∫V0

A · BdV would remain, where the integral is to be taken over the
entire plasma volume. (This is called Taylors conjecture; K0 is called the magnetic
helicity.) The variational problem is thus to minimize the functional I = W − λK0,
where λ is a Lagrange multiplier. The result is ∇ × B = μ0λB, where λ is now a
constant. (The constant λ can be related to the ratio of the total current to the total
flux.) Solutions of this equation are thus independent of the initial conditions and
can describe physically interesting states.

The above discussion applies to single-fluid-resistive MHD theory. When the
extended MHD Ohm’s law is used, the ions and electrons are placed on a more
equal basis, and we might expect the predictions of relaxation theory to be modified.
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Indeed, when the dynamical equations are (31, 32, 33, 34) are used, they can be
combined with the expression E = −∂A/∂t − ∇φ, where φ is the scalar potential,
into the useful form −∂Aα/∂t − ∇φα + Vα × Bα = Fα for each species, where
Aα = A + MαVα/qα is related to the canonical momentum for each species, Fα

contains the pressure and stress forces, and Bα = ∇ × Aα = B + Mα∇ × Vα/qα

is a generalized magnetic field related to the vector potential and the vorticity for
each species, and φα = φ + MαV 2

α /2qα . From these equations it can be shown
directly that, in the presence of fluctuations and dissipation, the generalized helicity
integrals Kα = ∫V0

Aα · BαdV , α = e, i , are relatively invariant with respect to the
total energy (magnetic WM plus kinetic WK ). The relaxed state is now determined
by minimizing the functional I = WM + WK − λe Ke − λi Ki (where the λα are
Lagrange multipliers) with respect to independent variations of A, Ve, and Vi . With
Me → 0 and V ≈ Vi , the result of the variational calculation (the relaxed state) is
given by

J = 2 (λe + λi ) B + 2λi Mi

e
∇ × V, (136)

V = 2λi

ne

(
B + Mi

e
∇ × V

)
, (137)

and, with Ve = Vi − J/ne,

Ve = −2λe

ne
B. (138)

The first term in Eq. (136) is similar to the single-fluid Taylor state, J = λB. How-
ever, the current density is no longer parallel to the magnetic field, but is affected by
the ion vorticity, and there is a net ion flow. The electrons continue to flow along the
field lines.

With Me = 0, the electron invariant Ke reduces to Taylor’s invariant helicity
K0. By identifying a separate invariant for each fluid, two-fluid theory places ions
and electrons on equal footing. The ion self-helicity, Ki , introduces flows, and the
variational problem must then consider both the magnetic and kinetic energies. The
relaxed state will therefore have both characteristic magnetic fields and zero-order
flows. These flows are inevitably sheared, and sheared flows are ubiquitous in lab-
oratory and, presumably, astrophysical plasmas. Their presence may be explained
by this theory. The equivalent state obtained from resistive MHD theory does not
contain these flows.

Finally, we comment on the relationship between plasma relaxation and the so-
called dynamo. One definition of a dynamo is a solution to the Faraday–Ampére–
Ohm equations, including resistivity, in which the total magnetic energy remains
finite as t → ∞. Since the Taylor relaxed state is a preferred state that maintains
itself in the presence of finite resistivity, it has historically been associated with
dynamo activity. This cannot occur in a state with too much symmetry, since, from
Ohm’s law, the parallel resistive electric field E‖ = ηbb · J will cause the magnetic
field to decay. However, if there are fluctuations δV and δB superimposed on the
symmetric fields, then the mean symmetric parallel electric field is 〈E〉‖ = −bb ·
〈δV × δB〉 + bb · 〈η · J〉. It can vanish, and the configuration can be preserved in
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the presence of resistivity. Thus, naturally occurring relaxed states are necessarily
associated with fluctuations. The essential ingredient is the non-vanishing of the
average 〈δV × δB〉 quadratic term in Ohm’s law. Extended MHD introduces the
additional quadratic (and higher) nonlinearities J × B/n and ∇ Pe/n. Their mean
values can also contribute to dynamo activity and sustainment. The role of these
terms in plasma relaxation and discharge sustainment in different parameter ranges
(and, in fact, in different regions of the same discharge) is also a topic of current
research interest.

7 Summary

We began with a description of a plasma as N interacting particles obeying the
laws of Hamiltonian dynamics. We naively hoped that, by integrating these equa-
tions forward in time, we could obtain a complete description of plasma dynamics.
We found this to be impractical for two reasons. First, there are simply too many
equations to integrate. Second, even if they could be integrated, it is not possible
to know their initial conditions with sufficient accuracy to make the calculation
meaningful. However, the fact that N � 1 allowed us to take advantage of the
“fuzziness” in our knowledge of the initial conditions and instead apply a statisti-
cal methodology. The success of this approach depends on the ergodic hypothesis,
which roughly states that the averaging a single system trajectory over time gives
the same result as averaging an ensemble of identical systems over phase space.
This allowed us to derive a time-dependent equation for the probability distribution
function. Further averaging allowed us to reduce the number of degrees of free-
dom needed to describe the system from 6N to 6 and arrive at the so-called kinetic
equation. This procedure required that we make a closure assumption, thereby relat-
ing certain high-order correlations of particle interactions to products of low-order
correlations.

The physical quantities that commonly describe a macroscopic system can be
defined as velocity space averages (or moments) of the distribution function. By
applying these averages directly to the kinetic equation, we derived a set of time-
dependent equations for these average quantities. These are called the moment equa-
tions, and they express the laws of conservation of mass, momentum, and energy.
This reduced the number of degrees of freedom from 6 to 3 (for each species). These
equations have the property that each successive equation for a moment contains the
next higher-order moment, so we could not escape the problem of closure. In this
case, closures express the high-order velocity moments in terms of combinations of
the lower-order moments. Finding these moment expressions requires solving the
kinetic equation in some approximation, and we noted that there was no univer-
sal agreement on either the order or form of the closures for strongly magnetized
plasmas.

The moment equations needed to be solved simultaneously with Maxwell’s
equations for the electromagnetic field. Maxwell’s equations had to be reduced to
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Gallilean invariance in order to obtain a consistent model. We found that a direct
consequence of this was that the electric force was always small compared with
the magnetic force and could be neglected. This result is sometimes called quasi-
neutrality.

There was a separate set of moment equations for each plasma species, ions,
and electrons. By judicious combination of these, we were able to obtain a set of
equations that looked like the familiar ideal MHD equations, but with extra terms.
These new terms describe important effects of separate ion and electron drifts (two-
fluid effects) and finite ion Larmor radius (FLR effects), which are not captured in
the ideal MHD model. The resulting set of equations is called the extended MHD
model.

We then introduced a set of dimensionless parameters, one of which was always
small. By writing the extended MHD equations in terms of these parameters, and
then ordering the parameters large or small with respect to the one small parameter,
we were able to identify four different regimes in which four different sets of fluid
equations are valid. These are fast flow and high frequencies (Hall MHD), moderate
flows and frequencies (ideal MHD), very slow flows and frequencies (drift MHD),
and extremely low flows and zero frequency (transport models). Thus, ideal MHD
is only one of several fluid models that can be used to describe the dynamics of
magnetized plasmas.

We then examined the wave and stability properties of the extended MHD model.
We found that the correction terms introduced new families of dispersive waves.
We also found that these terms generally have a stabilizing effect on ideal MHD
instabilities.

Finally, we described some problems in extended MHD that are at the forefront
of present theoretical plasma physics research.

So, we have come a long way in a short time. In trying to understand where
ideal MHD came from, we shot completely through our target and arrived at the
realization that ideal MHD is just a small subset of more complicated and physically
richer model, the extended MHD model. Nonetheless, ideal MHD is a very useful
model for understanding the basic behavior of magnetized plasmas. The goal now is
to understand the extended MHD model, and its accompanying closures, to the same
level that we understand ideal MHD. This is the focus of much modern research in
theoretical plasma physics.
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